逻辑回归与线性回归
二者最本质的区别是:逻辑回归解决分类问题,而线性回归解决回归问题。但二者之间又具有联系,可从线性回归转化为逻辑回归。
线性回归表达式为:
y
=
w
∗
x
+
b
y=w*x+b
y=w∗x+b
希望通过该模型做二分类任务,即目标为0,1,但并不可以用线性回归表示P(Y|X)=w*X+b
P(Y|X)条件概率需满足:1)0<=P(Y|X)<=1,2)
∑
y
P
(
Y
∣
X
)
=
1
\sum _{y}P(Y|X)=1
∑yP(Y∣X)=1
而
−
∝
<
w
∗
x
+
b
<
∝
-\propto <w*x+b<\propto
−∝<w∗x+b<∝,
x
ϵ
R
d
x\epsilon R ^{d}
xϵRd ,不满足条件概率
logistic function:
y
=
1
1
+
e
−
x
=
δ
(
x
)
y=\frac{1}{1+e^{-x}}=\delta (x)
y=1+e−x1=δ(x)
与线性回归联合:
p
(
y
∣
x
;
w
)
=
1
1
+
e
−
(
w
T
x
+
b
)
=
δ
(
w
T
x
+
b
)
p(y|x;w)=\frac{1}{1+e^{-(w^{T}x+b)}}=\delta (w^{T}x+b)
p(y∣x;w)=1+e−(wTx+b)1=δ(wTx+b)
对于二分类问题:
p
(
y
=
1
∣
x
;
w
)
=
1
1
+
e
−
(
w
T
x
+
b
)
p(y=1|x;w)=\frac{1}{1+e^{-(w^{T}x+b)}}
p(y=1∣x;w)=1+e−(wTx+b)1
p
(
y
=
0
∣
x
;
w
)
=
1
−
p
(
y
=
1
∣
x
;
w
)
=
e
−
(
w
T
x
+
b
)
1
+
e
−
(
w
T
x
+
b
)
p(y=0|x;w)=1-p(y=1|x;w)=\frac{e^{-(w^{T}x+b)}}{1+e^{-(w^{T}x+b)}}
p(y=0∣x;w)=1−p(y=1∣x;w)=1+e−(wTx+b)e−(wTx+b)
合并为:
p
(
y
∣
x
;
w
)
=
p
(
y
=
1
∣
x
;
w
)
y
[
1
−
p
(
y
=
1
∣
x
;
w
)
]
1
−
y
p(y|x;w)=p(y=1|x;w)^{y}[1-p(y=1|x;w)]^{1-y}
p(y∣x;w)=p(y=1∣x;w)y[1−p(y=1∣x;w)]1−y
Objective Function:
逻辑回归属于线性分类器
决策边界用于判断是否为线性分类器:
落在边界点的概率相同
⇒
\Rightarrow
⇒
p
(
y
=
1
∣
x
,
w
)
p
(
y
=
0
∣
x
,
w
)
=
1
\frac{p(y=1|x,w)}{p(y=0|x,w)}=1
p(y=0∣x,w)p(y=1∣x,w)=1
⇒
\Rightarrow
⇒
l
o
g
e
−
(
w
T
+
b
)
=
l
o
g
0
loge-(w^{T}+b)=log0
loge−(wT+b)=log0
⇒
\Rightarrow
⇒
−
(
w
T
+
b
)
=
0
-(w^{T}+b)=0
−(wT+b)=0
⇒
\Rightarrow
⇒
w
T
+
b
=
0
w^{T}+b=0
wT+b=0