计算广告与推荐系统有哪些区别?

计算广告与推荐系统有哪些区别?

 

区别的根本在于两个领域尝试解决的问题是不同的。

  • 对于计算广告来说,本质上要处理的是三方利益的协调问题,这三方分别是广告主、用户和媒体。
  • 对于推荐系统来说,本质上要处理的是用户体验的问题。

正是因为要处理问题的不同,导致了两个领域思考方式的不同。比如同样是构建一个CTR模型:

  • 对于计算广告系统来说,站的角度更多的是用这个CTR模型产生更多的收益,那么在使用的时候就更偏向于将CTR高的广告全都排在前面。
  • 而对于推荐系统来说,在使用CTR模型的时候,就不适宜全部按照CTR来进行内容排序。而是要兼顾内容的多样性,新颖性,和流行度。因为推荐系统的核心是用户体验,如果涸泽而渔的全部用根据用户行为历史生成的推荐内容,很容易让用户疲倦、透支用户的兴趣。那么为了照顾用户的整体体验并挖掘用户的长期兴趣,就要考虑用户在不同体验阶段的感受和行为特点。

再回到计算广告,由于广告系统处理的是一个三方利益的协调问题,那么为了“协调”,就诞生了很多相关且必要的技术。比如,“协调”的本质其实一种博弈方式,广告主和媒体关于价格的博弈,广告主之间的价格博弈,正是这种博弈的存在,使得计算广告一定要去关注基于博弈论的bidding策略。而且为了“协调”广告主、媒体的相关操作,诞生了支持性的相应模块,去处理广告排期、定向、预算控制等模块,这里面当然涉及大量算法和模型,比如处理广告排期需要最优化理论的支持,定向需要各类预测模型,预算控制需要控制论的一些知识等等。这些都是推荐系统里不存在的。

如果列举出两个领域重点要考虑的技术问题,大家也能体会到二者的不同(排名大致分先后):

  • 计算广告:CTR模型,Bidding策略,yield optimization(也许可以叫排期优化),智能预算控制; (反作弊机制)
  • 推荐系统:CTR模型及其他推荐模型,探索与利用(exploitation&exploration),冷启动问题,数据有偏问题

 

平台广告收入,也就是ecpm,可以直接做ctr cvr模型来优化;就是一个指标,平台收益

广告主生态和用户体验,可以用规则来优化,比如vcg计费,频率控制,也可以用模型来优化,比如给原本内容就优质的广告更多的展现机会。

 

一个完整的广告系统,从广告商投放广告到用户看到广告,需要以下几个重要组件:

  • [面向广告商的工具] 广告商可以根据自己的需要定制投放人群:年龄,性别,地理位置,职业,兴趣等等。
  • [算法] 个性化推荐:在众多符合条件的广告中选择最合适的一个。
  • [算法] 决定在哪里放广告:这在以前其实不是个事,因为就几个能放广告的固定位置(banner,页面右侧)。然而随着Facebook发明了Feed Ads,在新鲜事里放原生广告成了社交类产品的标配。以微信为例,在朋友圈里的第几个位置放广告其实是个挺有学问的事。放高了影响用户正常体验,放低了没人看得到。这大该就是微信口中的“实时社交混排算法”吧。
  • [算法] 定价:放的这个广告该跟广告商要多少钱。这受很多因素影响:放的位置高低,有多少个其他广告一起竞价,等等。

 

1)推荐是提升用户体验,广告是伤害用户体验;

2)推荐是2方(媒体,用户);广告是3方(广告主,媒体,用户);

3)推荐的目标是提升用户活跃度;广告的目标是提升营收(收益);

广告主:最少的资金成本换取最高的ROI(利益回报);

媒体:用最少的流量换取最多的广告费;

用户:尽可能少的损失体验;

计算广告的学科覆盖范围更广,涉及搜索,用户画像,高并发高性能网络服务器,银行级的计费和扣费,海量数据的埋点与监测,大数据分析,机制设计,营销包装,消费心理等等。

 

广告展示流程总结

第一步:

假设杜蕾斯花100万投广告,要求是被点击100万次。那么杜蕾斯先找到DSP(Demand side platform),把广告、钱、要求给到DSP。

第二步:

DSP会请求DMP,获取什么样的人容易点击杜蕾斯的广告。假设DMP(Data management platform)的反馈是”年轻、爱美、白领“容易点击杜蕾斯广告。

第三步:

DSP会去竞价ADX(AD exchange)找符合“年轻、爱美、白领”特性的广告位

第四步:

这时候有一个广告位——“小范”的优酷视频广告,通过SSP提供的信息很符合DSP中的杜蕾斯广告投放人群,并且这个广告位被放到了ADX中竞价

第五步:

DSP中的杜蕾斯广告通过不断抬高定价,从多个DSP竞争者中争取到了“小范优酷视频”的广告位。

第六步:

小范打开优酷视频,看到了杜蕾斯的广告~

 

推荐系统按CTR/CVR排序,广告要在这个基础上乘以广告主出价
广告的本质就是用钱弥补内容不受欢迎的因素,越烂的广告需要出价越高;竞争同一广告位的广告主越多,那价格就高
而传统按位置时段卖的广告,煤体对好广告烂广告的区分能力有限

 

广告VS搜索:

广告明显比搜索容易部分的是不需要复杂的爬虫技术和PageRank。而它比搜索困难的地方是它需要建模的数据量比搜索要大。搜索,广告与推荐三者的主要区别在于它们的准则不同,搜索主要是针对相关性,广告主要针对ROI(投资回报率)。举例来讲,比如搜索美联行,那么对于搜索来讲,必须将美联行放到结果首位,否则就不合理。但对于广告来讲,如果美联行代理公司的广告点击率高于美联行本身,因为针对的是ROI,所以它可以将美联行代理排在前面,而不需要将authority的美联行排在前面。

 

都是Q-D匹配

推荐的Q是用户行为和用户画像和上下文;搜索的Q就是Query短语;

广告对用户的短期画像不是很敏感,更关注长期画像;推荐系统对短期/实时画像更敏感(点了一个足球,下一页肯定有足球)

 

计算广告和推荐系统的最本质区别是目标和评价标准不同
推荐系统的目标是面向用户提供新鲜、相关、有趣的话题/产品,增强用户粘性, 增加产品的流量和活跃度
而计算广告学的核心目标是在广告主、媒体、用户利益之间寻找平衡, 匹配出的结果相关性只是一方面,另外还要考虑直接的商业利益。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值