AWQ量化(Activation-aware Weight Quantization)

论文:

AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration

中文解读:

深入理解AWQ量化技术 - 知乎 (zhihu.com)

动机:端侧设备用LLM,为了减少显存占用量,所以要用INT4量化;

实现:只量化W矩阵,存储INT4计算的时候再反量化为FP16(TensorRT-LLM反量化为FP8),进行计算;

原理:1. 哪些w的量化误差,会导致最终误差较大?答:和这些w相乘的那些activation,绝对值大的;所以,选取activation矩阵中,绝对值较大的channels,和这些相乘的w行;2. 怎么缩小这些行的量化误差?答:量化误差,是由round取整带来的,只要把w先扩大一些,再进行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值