快速获得最新干货
计算机视觉life的读者群和后台经常收到大家的提问,关于读硕博选择、研究方向选择、出国留学等各种问题。在此,我们为大家汇总了全球顶级的三维视觉、SLAM方向的研究机构,并对他们主要的研究成果做了简单汇总,从这些汇总中你可以:
-
及时跟踪全球三维视觉方向顶级研究机构的研究成果,把握趋势。
-
从中找到自己喜欢的研究方向、甚至未来的导师。
欢迎转发给更多的朋友~
欧洲
英国伦敦大学帝国理工学院 Dyson 机器人实验室
http://www.imperial.ac.uk/dyson-robotics-lab
简介:
伦敦帝国理工学院戴森机器人实验室成立于2014年,由Andrew Davison.教授领导。是戴森公司和帝国理工学院领导机器人视觉小组Andrew Davison教授的合作实验室,Andrew Davison是视觉SLAM领域的先驱,戴森提供大量的资金和支持,以建立一个机器人专家团队,他们合作产品包括Dyson 360 eye™vaccum清洁机器人。该实验室的重点是开发计算机视觉程序,使机器人能够超越受控环境,成功地导航并与现实世界互动。
实验室主要成就(http://www.imperial.ac.uk/dyson-robotics-lab/projects/):
ElasticFusion:
一个实时的稠密的视觉SLAM系统,可以利用RGB-D相机来对房间进行全局一致的三维稠密重建。
代码地址:https://bitbucket.org/dysonroboticslab/elasticfusionpublic/src/master/
CodeSLAM:
一种生成室内场景轨迹的大规模照片级真实渲染的系统。
SceneNet RGB-D:
一种生成室内场景轨迹的大规模照片级真实渲染的系统。
代码地址:https://bitbucket.org/dysonroboticslab/scenenetrgb-d/src/master/
数据集地址:https://robotvault.bitbucket.io/scenenet-rgbd.html
SemanticFusion:
一种实时可视SLAM系统,能够使用卷积神经网络在语义上注释密集的3D场景。
代码地址:https://bitbucket.org/dysonroboticslab/semanticfusion/src/master/
英国牛津大学Active Vision Laboratory
http://www.robots.ox.ac.uk/ActiveVision/index.html
简介:Active Vision实验室主攻计算视觉,特别是传统和深度图像的3D场景重建。实验室致力于定位和建图,可穿戴和辅助计算,语义视觉,增强现实,人体运动分析和导航的应用程序。
实验室主要成果(http://www.robots.ox.ac.uk/ActiveVision/Research/index.html)
使用3D物体形状Priors进行密集重建
PTAM:
(并行跟踪和建图)用于增强现实的相机跟踪系统
源码地址:https://github.com/Oxford-PTAM/PTAM-GPL
英国牛津大学 Torr Vision Group
http://www.robots.ox.ac.uk/~tvg/
简介:牛津大学工程科学系Torr Vision Group(前身为布鲁克斯视觉集团,牛津布鲁克斯大学)成立于2005年,后来于2013年移居牛津大学,由Philip Torr教授领导。它包括大约20-25人。该小组的目的是参与最先进的计算机视觉和人工智能数学理论研究,但要保持数学研究与社会需求相关。该小组的一个特别重点是用移动相机进行实时重建环境,例如无人机,智能眼镜或其他机器人。
实验室主要成果(http://www.robots.ox.ac.uk/~tvg/projects.php)
交互式实时3D场景分割的框架:
创建了一个只需使用廉价的硬件,就可以在半小时内捕获并重建整个房屋或实验室的建图系统。
源码地址:https://github.com/torrvision/spaint/tree/collaborative
基于立体视觉的城市三维语义建模:
可以生成具有相关语义标记的高效且准确的密集三维重建地图。
苏黎世联邦理工学院的Autonomous System Lab
http://www.asl.ethz.ch/
简介:
由Roland Siegwart教授领导,Autonomous System Lab于1996年在洛桑联邦理工学院成立,它是机器人和智能系统研究所(IRIS)的一部分。
实验室旨在创造能够在复杂多样的环境中自主运行的机器人和智能系统。设计机电和控制系统,使机器人可以自主适应不同的情况,并应对不确定和动态的日常环境。机器人可以在地面,空中和水中运动,同时具备在复杂环境下自主导航的功能,研究出了包括用于感知,抽象,建图和路径规划的方法和工具。他们还在tango项目上与谷歌合作,负责视觉惯导的里程计,基于视觉的定位和深度重建算法。
实验室主要成就:(https://asl.ethz.ch/publications-and-sources/open-source-software.html)
libpointmatcher:
libpointmatcher是一个模块化库,它实现了迭代最近点(ICP)算法,用于配准点云。
代码地址:https://github.com/ethz-asl/libpointmatcher
libnabo:
用于低维空间的快速K最近邻库
代码地址:https://github.com/ethz-asl/libnabo
ethzasl sensorfusion:
基于EKF的时延补偿单传感器和多传感器融合框架
代码地址:https://github.com/ethz-asl/ethzaslsensorfusion