最强战队 | 三维视觉、SLAM方向全球顶尖实验室汇总

快速获得最新干货

计算机视觉life的读者群和后台经常收到大家的提问,关于读硕博选择、研究方向选择、出国留学等各种问题。在此,我们为大家汇总了全球顶级的三维视觉、SLAM方向的研究机构,并对他们主要的研究成果做了简单汇总,从这些汇总中你可以:

  • 及时跟踪全球三维视觉方向顶级研究机构的研究成果,把握趋势。

  • 从中找到自己喜欢的研究方向、甚至未来的导师。

欢迎转发给更多的朋友~

欧洲

英国伦敦大学帝国理工学院 Dyson 机器人实验室

http://www.imperial.ac.uk/dyson-robotics-lab

简介:

伦敦帝国理工学院戴森机器人实验室成立于2014年,由Andrew Davison.教授领导。是戴森公司和帝国理工学院领导机器人视觉小组Andrew Davison教授的合作实验室,Andrew Davison是视觉SLAM领域的先驱,戴森提供大量的资金和支持,以建立一个机器人专家团队,他们合作产品包括Dyson 360 eye™vaccum清洁机器人。该实验室的重点是开发计算机视觉程序,使机器人能够超越受控环境,成功地导航并与现实世界互动。

实验室主要成就(http://www.imperial.ac.uk/dyson-robotics-lab/projects/):

ElasticFusion

一个实时的稠密的视觉SLAM系统,可以利用RGB-D相机来对房间进行全局一致的三维稠密重建。

代码地址:https://bitbucket.org/dysonroboticslab/elasticfusionpublic/src/master/

CodeSLAM

一种生成室内场景轨迹的大规模照片级真实渲染的系统。

SceneNet RGB-D

一种生成室内场景轨迹的大规模照片级真实渲染的系统。

代码地址:https://bitbucket.org/dysonroboticslab/scenenetrgb-d/src/master/

数据集地址:https://robotvault.bitbucket.io/scenenet-rgbd.html

SemanticFusion

一种实时可视SLAM系统,能够使用卷积神经网络在语义上注释密集的3D场景。

代码地址:https://bitbucket.org/dysonroboticslab/semanticfusion/src/master/


英国牛津大学Active Vision Laboratory

http://www.robots.ox.ac.uk/ActiveVision/index.html

简介:Active Vision实验室主攻计算视觉,特别是传统和深度图像的3D场景重建。实验室致力于定位和建图,可穿戴和辅助计算,语义视觉,增强现实,人体运动分析和导航的应用程序。

实验室主要成果(http://www.robots.ox.ac.uk/ActiveVision/Research/index.html)

使用3D物体形状Priors进行密集重建

PTAM

(并行跟踪和建图)用于增强现实的相机跟踪系统

源码地址:https://github.com/Oxford-PTAM/PTAM-GPL


英国牛津大学 Torr Vision Group

http://www.robots.ox.ac.uk/~tvg/

简介:牛津大学工程科学系Torr Vision Group(前身为布鲁克斯视觉集团,牛津布鲁克斯大学)成立于2005年,后来于2013年移居牛津大学,由Philip Torr教授领导。它包括大约20-25人。该小组的目的是参与最先进的计算机视觉和人工智能数学理论研究,但要保持数学研究与社会需求相关。该小组的一个特别重点是用移动相机进行实时重建环境,例如无人机,智能眼镜或其他机器人。

实验室主要成果(http://www.robots.ox.ac.uk/~tvg/projects.php)

交互式实时3D场景分割的框架

创建了一个只需使用廉价的硬件,就可以在半小时内捕获并重建整个房屋或实验室的建图系统。

源码地址:https://github.com/torrvision/spaint/tree/collaborative


基于立体视觉的城市三维语义建模

可以生成具有相关语义标记的高效且准确的密集三维重建地图。

苏黎世联邦理工学院的Autonomous System Lab

http://www.asl.ethz.ch/

简介:

由Roland Siegwart教授领导,Autonomous System Lab于1996年在洛桑联邦理工学院成立,它是机器人和智能系统研究所(IRIS)的一部分。

实验室旨在创造能够在复杂多样的环境中自主运行的机器人和智能系统。设计机电和控制系统,使机器人可以自主适应不同的情况,并应对不确定和动态的日常环境。机器人可以在地面,空中和水中运动,同时具备在复杂环境下自主导航的功能,研究出了包括用于感知,抽象,建图和路径规划的方法和工具。他们还在tango项目上与谷歌合作,负责视觉惯导的里程计,基于视觉的定位和深度重建算法。

实验室主要成就:(https://asl.ethz.ch/publications-and-sources/open-source-software.html)

libpointmatcher

libpointmatcher是一个模块化库,它实现了迭代最近点(ICP)算法,用于配准点云。

代码地址:https://github.com/ethz-asl/libpointmatcher

libnabo

用于低维空间的快速K最近邻库

代码地址:https://github.com/ethz-asl/libnabo

ethzasl sensorfusion

基于EKF的时延补偿单传感器和多传感器融合框架

代码地址:https://github.com/ethz-asl/ethzaslsensorfusion

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

smartvxworks

创造不易,感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值