AAT矩阵元素之和的性质

A A T AA^T AAT矩阵元素之和的性质

1. 假设

A A A为任意 n ∗ n n*n nn矩阵,设A的各个元素为

A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] A=\begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{bmatrix} A=a11a21an1a12a22an2a1na2nann
A A T AA^T AAT的各个元素为
A A T = [ c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋱ ⋮ c n 1 c n 2 ⋯ c n n ] AA^T=\begin{bmatrix} {c_{11}}&{c_{12}}&{\cdots}&{c_{1n}}\\ {c_{21}}&{c_{22}}&{\cdots}&{c_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {c_{n1}}&{c_{n2}}&{\cdots}&{c_{nn}}\\ \end{bmatrix} AAT=c11c21cn1c12c22cn2c1nc2ncnn

2. 结论

A A T 各 个 元 素 之 和 = ∑ i , j c i , j = ∑ j = 1 n ( ∑ i = 1 n a i , j ) 2 ≥ 0 AA^T{各个元素之和}=\sum_{i,j}c_{i,j}=\sum_{j=1}^n(\sum_{i=1}^n a_{i,j})^2\ge 0 AAT=i,jci,j=j=1n(i=1nai,j)20

3. 证明

3.1 引理

( x 1 + x 2 + ⋯ + x n ) 2 = x 1 2 + x 2 2 + ⋯ + x n 2 + 2 ∑ i < j x i x j (x_1+x_2+{\cdots}+x_n)^2=x_1^2 + x_2^2 +{\cdots}+x_n^2 + 2∑_{i<j} x_i x_j (x1+x2++xn)2=x12+x22++xn2+2i<jxixj

3.2 分析

计算 A A T AA^T AAT,可以发现

A A A的第 i i i行乘以 A T A^T AT的第 i i i列时,此时相当于求 A A A的第 i i i行每个元素的平方和再相加(第 i i i行向量二范数的平方),由此,我们将得到 A A A中每个元素的平方和,即
∑ i , j a i , j 2 \sum_{i,j}a_{i,j}^2 i,jai,j2
A A A的第 i i i行乘以 A T A^T AT的第 j ( i ≠ j ) j(i \neq j) j(i=j)列时,此时会得到
[ a i 1 a i 2 ⋯ a i n ] ∗ [ a j 1 a j 2 ⋮ a j n ] = a i 1 a j 1 + a i 2 a j 2 + ⋯ a i n a j n \begin{bmatrix} {a_{i1}}&{a_{i2}}&{\cdots}&{a_{in}} \end{bmatrix}*\begin{bmatrix} {a_{j1}}\\{a_{j2}}\\{\vdots}\\{a_{jn}} \end{bmatrix}=a_{i1}a_{j1}+a_{i2}a_{j2}+{\cdots}a_{in}a_{jn} [ai1ai2ain]aj1aj2ajn=ai1aj1+ai2aj2+ainajn
由于 A A A的第 j j j行与 A T A^T AT的第 i i i列相乘时,所得结果与上式相同,所以,仅考虑 i < j i\lt j i<j的情况,并将最终的结果乘2。

由此,需要计算
∑ i < j [ a i 1 a i 2 ⋯ a i n ] ∗ [ a j 1 a j 2 ⋮ a j n ] \sum_{i<j}\begin{bmatrix} {a_{i1}}&{a_{i2}}&{\cdots}&{a_{in}} \end{bmatrix}*\begin{bmatrix} {a_{j1}}\\{a_{j2}}\\{\vdots}\\{a_{jn}} \end{bmatrix} i<j[ai1ai2ain]aj1aj2ajn
上式的整理较为复杂,我们以一个 3 ∗ 3 3*3 33的矩阵为例,先来了解整理的思想,然后再证明 n n n维的情况,
特别注意此处式子的排列形式,可以带来启发!
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] A=\begin{bmatrix} {a_{11}}&{a_{12}}&{a_{13}}\\ {a_{21}}&{a_{22}}&{a_{23}}\\ {a_{31}}&{a_{32}}&{a_{33}} \end{bmatrix} A=a11a21a31a12a22a32a13a23a33
此时 ∑ i < j [ a i 1 a i 2 ⋯ a i n ] ∗ [ a j 1 a j 2 ⋮ a j n ] \sum_{i<j}\begin{bmatrix} {a_{i1}}&{a_{i2}}&{\cdots}&{a_{in}} \end{bmatrix}*\begin{bmatrix} {a_{j1}}\\{a_{j2}}\\{\vdots}\\{a_{jn}} \end{bmatrix} i<j[ai1ai2ain]aj1aj2ajn
可以写成
a 11 a 21 + a 12 a 22 + a 13 a 23 + ( i = 1 , j = 2 ) a 11 a 31 + a 12 a 32 + a 13 a 33 + ( i = 1 , j = 3 ) a 21 a 31 + a 22 a 32 + a 23 a 33 ( i = 2 , j = 3 ) = a_{11}a_{21}+a_{12}a_{22}+a_{13}a_{23} + (i=1,j=2)\\ a_{11}a_{31}+a_{12}a_{32}+a_{13}a_{33} + (i=1,j=3)\\ a_{21}a_{31}+a_{22}a_{32}+a_{23}a_{33} (i=2,j=3) = a11a21+a12a22+a13a23+(i=1,j=2)a11a31+a12a32+a13a33+(i=1,j=3)a21a31+a22a32+a23a33(i=2,j=3)=
此时竖着看每一列式子
第 一 列 = ∑ i < j a i 1 a j 1 第 二 列 = ∑ i < j a i 2 a j 2 第 三 列 = ∑ i < j a i 3 a j 3 第一列=\sum_{i<j}a_{i1}a_{j1}\\ 第二列=\sum_{i<j}a_{i2}a_{j2}\\ 第三列=\sum_{i<j}a_{i3}a_{j3} =i<jai1aj1=i<jai2aj2=i<jai3aj3

有这个思想,我们考虑 n n n维的情况
2 ∑ i < j [ a i 1 a i 2 ⋯ a i n ] ∗ [ a j 1 a j 2 ⋮ a j n ] = 2 ∑ i , j , k = 1 n ( ∑ i < j a i k a j k ) 2\sum_{i<j}\begin{bmatrix} {a_{i1}}&{a_{i2}}&{\cdots}&{a_{in}} \end{bmatrix}*\begin{bmatrix} {a_{j1}}\\{a_{j2}}\\{\vdots}\\{a_{jn}} \end{bmatrix}\\ =2\sum_{i,j,k=1}^n(\sum_{i<j}a_{ik}a_{jk}) 2i<j[ai1ai2ain]aj1aj2ajn=2i,j,k=1n(i<jaikajk)

给每一个 2 ∑ i < j a i k a j k 2\sum_{i<j}a_{ik}a_{jk} 2i<jaikajk配一组 ∑ i = 1 n a i k 2 \sum_{i=1}^n a_{ik}^2 i=1naik2,得
2 ∑ i < j a i k a j k + ∑ i = 1 n a i k 2 = ( ∑ i = 1 n a i k ) 2 2\sum_{i<j}a_{ik}a_{jk}+\sum_{i=1}^n a_{ik}^2=(\sum_{i=1}^na_{ik})^2 2i<jaikajk+i=1naik2=(i=1naik)2

k k k 1 到 n 1到n 1n求和,既有
∑ i , j c i , j = ∑ k = 1 n ( ∑ i = 1 n a i , k ) 2 ≥ 0 \sum_{i,j}c_{i,j}=\sum_{k=1}^n(\sum_{i=1}^n a_{i,k})^2\ge 0 i,jci,j=k=1n(i=1nai,k)20
为表示方便,我们用 j j j表示列,即可得到
A A T 各 个 元 素 之 和 = ∑ i , j c i , j = ∑ j = 1 n ( ∑ i = 1 n a i , j ) 2 ≥ 0 AA^T{各个元素之和}=\sum_{i,j}c_{i,j}=\sum_{j=1}^n(\sum_{i=1}^n a_{i,j})^2\ge 0 AAT=i,jci,j=j=1n(i=1nai,j)20
Proof Completed.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值