Review of classification
Step 1 function set
Step 2:Goodeness of function
假定从一组后验概率中产生training data,某一组w和b产生一组N个training data的概率
则最有可能的w和b,就是最大的L,即
将确定最大转换为求最小,即
取Ln可以简化计算,在数学求极值中经常见到,此时会将乘法变为加法
y hat表示正确分类的结论,1对应class 1 0对应class 2
代入上式
交叉熵代表两个分布有多接近
比较两种regression,如下
Find the best function
用loss function对w和对b的偏微分
同理处理第二项
对w的偏微分为
在更新该参数的时候:
和三个参数有关,xi是样本,绿色下划线表示目标和现在的model的output的差距,学习率
larger difference, large update
Limitation of Logistic Regression
诸如这样的样本,通过logistic得到的boundary是一条直线,所以很难分出两个类别。
解决问题的方法:Feature Transformation,借助于机器去进行变换的方法是 cascading logistic regression models
将原来的特征平面映射到另一个特征平面,这里的调整w和b,方便用一个boundary区分不同类