李宏毅2020机器学习--P11 Logistic Regression

Review of classification

Step 1 function set

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Step 2:Goodeness of function

假定从一组后验概率中产生training data,某一组w和b产生一组N个training data的概率
在这里插入图片描述
在这里插入图片描述
则最有可能的w和b,就是最大的L,即
在这里插入图片描述
将确定最大转换为求最小,即
在这里插入图片描述
取Ln可以简化计算,在数学求极值中经常见到,此时会将乘法变为加法
在这里插入图片描述
y hat表示正确分类的结论,1对应class 1 0对应class 2
在这里插入图片描述
代入上式
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
交叉熵代表两个分布有多接近
比较两种regression,如下
在这里插入图片描述

Find the best function

用loss function对w和对b的偏微分
在这里插入图片描述
同理处理第二项
在这里插入图片描述
对w的偏微分为
在这里插入图片描述
在更新该参数的时候:
在这里插入图片描述
和三个参数有关,xi是样本,绿色下划线表示目标和现在的model的output的差距,学习率
larger difference, large update

Limitation of Logistic Regression

在这里插入图片描述
诸如这样的样本,通过logistic得到的boundary是一条直线,所以很难分出两个类别。
解决问题的方法:Feature Transformation,借助于机器去进行变换的方法是 cascading logistic regression models
在这里插入图片描述
将原来的特征平面映射到另一个特征平面,这里的调整w和b,方便用一个boundary区分不同类
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
李宏的2020机器学习笔记中,有一个关于注意力机制(Attention)的部分。这部分内容主要介绍了生成模型(Generation)、注意力(Attention)、生成的技巧(Tips for Generation)以及指针网络(Pointer Network)。在生成模型中,主要讲述了如何生成一个有结构的对象。接下来介绍了注意力机制,包括一些有趣的技术,比如图片生成句子等。在生成的技巧部分,提到了一些新的技术以及可能遇到的问题和偏差,并给出了相应的解决方案。最后,稍微提到了强化学习。其中还提到了在输出"machine"这个单词时,只需要关注"机器"这个部分,而不必考虑输入中的"学习"这个部分。这样可以得到更好的结果。另外,还提到了关于产生"ei"的方法,其中有研究应用了连续动态模型自注意力(Self-attention)来学习位置编码的方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [2020李宏机器学习笔记-Condition Generation by RNN&Attention](https://blog.csdn.net/zn961018/article/details/117593813)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [李宏机器学习学习笔记:Self-attention](https://blog.csdn.net/weixin_44455827/article/details/128094176)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值