MLOps
文章平均质量分 89
提供MLOps最新理论与实践案例
深蓝学院
深蓝学院(www.shenlanxueyuan.com)是专注于人工智能的在线教育平台,由中科院自动化所毕业博士团队创建。
展开
-
以数据为中心的AI构建的一种高效的MLOps系统
摘要2.1 人工智能算法和工具2.2 以数据为中心的人工智能3.1 ALaaS的亮点(2)数据管理器4.1 评估设置硬件和软件结果与见解五总结。原创 2022-09-08 10:53:47 · 740 阅读 · 0 评论 -
Google MLOps白皮书:MLOps实践者指南Part I MLOps生命周期及核心能力
这是由于各种问题造成的。除此之外,您还应该收集和监控相关的业务KPI(例如,点击率、收入提升和用户体验),业务KPI有助于您了解ML模型对业务的影响,并相应地进行调整。随着机器学习(ML)系统的快速发展,需要在ML工程的背景下开发类似的方法,以处理ML实际应用的独特复杂性。McKinsey对人工智能的全球调查发现,标准框架和开发流程的到位是高效的ML团队的区别因素之一。当数据科学家和ML研究人员原型化模型架构和训练例程时,他们创建标注数据集,并使用特征和其他可复用的ML工件(通过数据和模型管理过程管理)。原创 2022-08-25 16:13:31 · 746 阅读 · 0 评论 -
MLOps是什么,为什么重要,以及如何实现?
通过部署机器学习训练流程,您可以启用持续训练,并且您可以设置持续集成与持续部署系统来快速测试、构建和部署机器学习流程的新实现。要在生产中快速可靠地更新工作流,您需要一个强大的自动化持续集成与持续部署系统,借助此自动化持续集成与持续部署系统,您的数据科学家可以快速探索有关特征工程、模型架构和超参数的新想法。但是,您需要尝试新的机器学习想法并快速部署机器学习组件的新实现。这对于刚开始使用机器学习的公司来说很典型,如果您的模型很少更改或训练,则完全手动的机器学习工作流程和数据科学家驱动的流程可能就足够了。...原创 2022-08-16 16:01:19 · 3600 阅读 · 0 评论 -
2022年最好用的8个MLOps工具和平台
该平台为开发团队提供有关模型、算法和数据集的警报,这些模型、算法和数据集需要随着时间的推移进行调整。Domino Data Lab 的 Domino 数据科学平台对于专注于数据管理的团队来说是一个受欢迎的平台,特别是因为它专注于为 MLOps的数据创建集中式的存储和可视化空间。Domino 的平台对于希望进行数据民主化的团队来说是一个强大的解决方案,因为它提供了如此多的学习和模板资源——例如它的知识中心和工作台。为这些模型提供模板的工具,以及可以通过目录轻松查找模板的工具,是 MLOps 团队的最爱。翻译 2022-08-19 14:26:01 · 2201 阅读 · 0 评论 -
机器学习运维(MLOps):原理、组件、角色和架构
所有工业级的机器学习 (ML) 项目的最终目标是开发 ML 产品并快速将其投入生产。翻译 2022-08-16 15:43:14 · 886 阅读 · 0 评论 -
MLOps最全的资料合集:书籍、课程与博文
MLOps并不是那么简单,尤其是在当今MLOps不断变化的环境中。MLOps存在许多挑战——构建、集成、测试、发布、部署和基础架构管理,您需要经常关注最新的MLOps实践并且知道如何适应这些挑战。原创 2022-08-16 15:19:54 · 1042 阅读 · 0 评论