论文标题:
SL-SLAM: A robust visual-inertial SLAM based deep feature extraction and matching
论文作者:
Zhang Xiao, Shuaixin Li
项目地址:
https://github.com/zzzzxxxx111/SLslam
导读:
哈尔滨工程大学和中国国防科技创新研究院提出了SL-SLAM系统,该系统利用Superpoint特征点和LightGlue匹配器进行视觉SLAM的前段跟踪和特征匹配,改进现有的SLAM框架,通过大量的实验对比分析,证明能够显著提高slam系统的精度和鲁棒性。©️【深蓝AI】编译
1. 摘要
该文章尝试利用深度学习技术,通过深度特征提取和匹配方法,提高基于视觉的 SLAM 系统的性能(尤其是在具有挑战性的环境中)。本文提出了一种多功能混合视觉 SLAM 框架,旨在提高在恶劣条件下的适应性,如弱光环境、动态光照条件、纹理较弱的区域以及相机明显抖动等。在近年来基于学习的优秀算法的基础上,本文从零开始设计了一个新颖的系统,在所有 SLAM 任务中使用相同的特征提取和匹配方法。本文的系统支持多种模式,包括单目、双目、单目惯性和双目惯性配置,可灵活应对现实世界中的各种场景。通过在公开数据集和自收集数据上进行的综合实验,本文证明了 SL-SLAM 系统与 SOTA 方法相比的卓越性能。本文还对视觉 SLAM 与深度学习方法进行了深入的定量分析,以便为未来的研究工作提供见解,实验结果展示了该系统在实现更高的定位精度和稳健跟踪性能方面的能