机器学习(一)~模型评估与选择 之 *数据集划分与调参

机器学习(一)~模型评估与选择 之 *数据集划分与调参

1.训练集、测试集与验证集

训练集: 模型训练数据
测试集: 评估泛化能力
验证集: 模型选择与调参
为了研究对比不同算法的泛化性能,用测试集上的拟合效果来估计不同模型的泛化能力,而把训练集再分为训练集和验证集,基于验证集上的性能来进行模型选择和调参

2.划分原则与方法

原则: 训练集/测试集的划分应尽可能保持数据分布一致性,测试集应尽可能与训练集互斥,即未被同时用于训练,避免引入额外偏差影响最终结果

留出法: 直接将数据集划分为两个互斥的集合,单次留出法往往不够稳定可靠,一般采用若干次随机划分,重复实验评估后取平均值作为留出法的评估结果(即多次留出法的评估结果均值作为评估结果才算可靠)

交叉验证法: 将数据集D划分为k个大小相似的互斥子集(通过分层采样得到),每次k-1个子集作为训练集,剩下1个子集为测试集,一次k折交叉验证进行k次训练/测试,保证每个子集都被训练/测试到

交叉验证法评估结果的稳定性与保真性大程度取决于k值,也叫“k折交叉验证(k-fold cross validation)”,常用k取5、10、20,下图是10折交叉验证

在这里插入图片描述

  • 注意:10次“10折交叉验证法”与100次“留出法”都是进行了100次训练/测试

留一交叉验证法: 是交叉验证法的一个特例,此时k=m(样本总数),即每次测试集只有一条数据
优点:受样本规模变化的影响小,结果往往准确
缺点:训练成本大

自助法: 有放回的采样m次,则样本在m次采样中始终未被采到的概率为:
在这里插入图片描述
即有1/3的样本始终未被采到,使其作为测试集

  • 自助法在数据集较小,难以划分训练测试集时很有用
  • 可以从初始数据集产生多个不同训练集,对集成学习等方法有很大好处
  • 缺点:自助法产生的数据集改变了初始数据集的分布,这会引入估计偏差,因此初始数据量足够时,留出法和交叉验证法更常用些

3.调参与最终模型

两类参数: 算法参数/”超参数“、模型参数

  • ”超参数“数目一般在10以内,模型参数数目可以上亿
  • 调参方式相似,均是产生多个模型之后基于某种评估方法进行选择
  • 但”超参数“是人工设定多个参数候选值后产生模型,模型参数通过学习来产生多个候选模型(例如神经网络在不同轮数停止训练)
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: import xgboost as xgb from sklearn.grid_search import GridSearchCV# 设置参数列表 param_grid = { 'max_depth': [3, 4, 5], 'learning_rate': [0.01, 0.1, 0.2], 'n_estimators': [200, 400, 600], 'subsample': [0.8, 1.0], 'colsample_bytree': [0.8, 1.0] } # 使用GridSearchCV进行搜索 xgb_model = xgb.XGBClassifier() grid_search = GridSearchCV(xgb_model, param_grid, verbose=1, cv=5) grid_search.fit(X_train, y_train) # 输出最优参数 best_parameters = grid_search.best_params_ print(best_parameters) ### 回答2: XGBoost是一种常用的梯度提升树算法,可以用于分类和回归问题。调参是优化模型性能的关键步骤。下面是一个关于XGBoost机器学习模型调参Python代码示例: ```python import xgboost as xgb from sklearn.datasets import load_boston from sklearn.model_selection import GridSearchCV, train_test_split from sklearn.metrics import mean_squared_error # 载入数据集 data = load_boston() X, y = data.data, data.target # 划分训练集和验证集 X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=42) # 定义模型 model = xgb.XGBRegressor() # 定义要搜索的超参数范围 param_grid = { 'n_estimators': [50, 100, 200], 'max_depth': [3, 4, 5], 'learning_rate': [0.1, 0.01, 0.001] } # 网格搜索调参 grid = GridSearchCV(model, param_grid, scoring='neg_mean_squared_error', cv=5) grid.fit(X_train, y_train) # 输出最佳参数和最佳得分 print("Best Parameters: ", grid.best_params_) print("Best Score: ", -grid.best_score_) # 使用最佳参数的模型进行预测 best_model = grid.best_estimator_ y_pred = best_model.predict(X_valid) # 计算均方误差 mse = mean_squared_error(y_valid, y_pred) print("Mean Squared Error: ", mse) ``` 在这个示例中,我们首先导入了必要的库,包括xgboost、sklearn.datasets等。然后我们使用`load_boston`函数载入一个波士顿房价的数据集,并将其划分为训练集和验证集。 接下来,我们定义了一个XGBoost回归模型,并定义了我们要搜索的超参数范围。在这个示例中,我们搜索了三个超参数:n_estimators(弱学习器的个数)、max_depth(树的最大深度)和learning_rate(学习率)。 然后,我们使用`GridSearchCV`函数进行网格搜索调参。其中,`scoring`参数指定了评估指标(负均方误差),`cv`参数指定了交叉验证的折数。 最后,我们输出了最佳参数和最佳得分。然后,使用最佳参数的模型进行预测,并计算了均方误差。 这是一个简单的示例,实际调参可能需要更多的超参数和更复杂的搜索策略,但以上代码可以作为一个起点帮助你进行XGBoost模型的调参。 ### 回答3: xgboost是一种强大的机器学习模型,但在使用过程中需要调参来优化模型的性能。下面是一个关于xgboost机器学习模型调参Python代码示例: ```python import xgboost as xgb from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.model_selection import GridSearchCV # 载入数据 boston = load_boston() X, y = boston.data, boston.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 构建xgb模型 xgbr = xgb.XGBRegressor() # 设置需要调参的参数 parameters = {'nthread': [4], 'objective': ['reg:squarederror'], 'learning_rate': [0.1, 0.01], 'max_depth': [3, 5, 7], 'min_child_weight': [1, 3, 5], 'subsample': [0.6, 0.8], 'colsample_bytree': [0.6, 0.8], 'n_estimators': [100, 200] } # 使用GridSearchCV进行调参 grid_search = GridSearchCV(estimator=xgbr, param_grid=parameters, scoring='neg_mean_squared_error', cv=5, n_jobs=-1) grid_search.fit(X_train, y_train) # 输出最佳参数和最佳得分 best_parameters = grid_search.best_params_ best_score = grid_search.best_score_ print("Best parameters: ", best_parameters) print("Best score: ", best_score) # 使用最佳参数训练模型 xgbr_best = xgb.XGBRegressor(**best_parameters) xgbr_best.fit(X_train, y_train) # 预测并计算均方误差 y_pred = xgbr_best.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("Mean Squared Error: ", mse) ``` 以上代码使用了xgboost模型对波士顿房价数据进行预测,通过GridSearchCV调参获取最佳参数,并使用最佳参数训练模型,最后输出了预测结果的均方误差。你可以根据自己的需要,根据实际情况修改代码中的参数范围和评估指标。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值