PyTorch实战(X) - - 神经网络常见细节技巧

神经网络常见细节技巧

  • 定义模型时:
initrange = 0.5 / self.embed_size
       self.out_embed = nn.Embedding(self.vocab_size, self.embed_size, sparse=False)
       self.out_embed.weight.data.uniform_(-initrange, initrange) //权重初始化的一种方法
  • torch.bmm()为batch间的矩阵相乘(b,n,m)*(b,m,p)=(b,n,p)
  • 取出self.in_embed数据参数
 def input_embeddings(self):   // 取出self.in_embed数据参数
        return self.in_embed.weight.data.cpu().numpy()
  • USE CUDA
USE_CUDA = torch.cuda.is_available()
if USE_CUDA:
model = model.cuda()   
  • 余弦相似度
sklearn.metrics.pairwise.cosine_similarity(word1_embed
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值