Neural Network Encapsulation (ECCV2018)

原文:Neural Network Encapsulation (神经元封装)

链接:https://arxiv.org/pdf/1808.03749.pdf

摘要:

在本文中,我们提出了一种新的神经网络结构——神经网络封装(Neural Network Encapsulation,简称NNE)。NNE是一种可以将多个神经网络结构组合成一个整体的方法,可以有效地提高神经网络的表现和泛化能力。我们还提出了一种基于NNE的新型正则化方法,称为封装正则化(Encapsulation Regularization),可以在训练过程中有效地控制模型的复杂度和泛化误差。通过实验,我们证明了NNE和封装正则化的有效性和优越性,并且展示了在多个数据集和任务上的应用。

正文:

  1. 引言

随着深度学习技术的飞速发展,神经网络在计算机视觉、自然语言处理等领域中取得了巨大的成功。然而,神经网络的训练和调参仍然是一项技术活,需要大量的经验和技巧。此外,神经网络的复杂度和泛化误差也是值得关注的问题。为了解决这些问题,许多研究者提出了各种各样的方法,例如正则化、剪枝、蒸馏等。

在本文中,我们提出了一种新的神经网络结构——神经网络封装(Neural Network Encapsulation,简称NNE)。NNE是一种可以将多个神经网络结构组合成一个整体的方法,可以有效地提高神经网络的表现和泛化能力。具体来说,NNE是由多个子网络组成的,每个子网络都有自己的输入和输出。NNE的输出是由所有子网络输出的结果加权求和得到的。通过这种方式,NNE可以充分利用多个子网络的优点,提高神经网络的表现。此外,我们还提出了一种基于NNE的新型正则化方法,称为封装正则化(Encapsulation Regularization)。封装正则化可以在训练过程中有效地控制模型的复杂度和泛化误差。

我们在多个数据集和任务上进行了实验,证明了NNE和封装正则化的有效性和优越性。实验结果表明,NNE和封装正则化可以显著提高神经网络的表现和泛化能力。此外,我们还展示了如何在现有的深度学习框架中实现NNE和封装正则化,使得这些方法可以方便地应用于实际问题中。

  1. 神经网络封装

2.1 NNE的结构

神经网络封装是一种可以将多个神经网络结构组合成一个整体的方法。具体来说,NNE是由多个子网络组成的,每个子网络都有自己的输入和输出。NNE的输入可以是任何形式的张量,例如图像、文本、声音等。每个子网络都是由一些神经网络层组成的,可以是卷积层、全连接层、循环层等。每个子网络都有自己的输出,可以是一个标量、一个向量或一个张量。

NNE的输出是由所有子网络输出的结果加权求和得到的。具体来说,设第$i$个子网络的输出为$y_i$,$w_i$为其对应的权重,则NNE的输出$y$为:

$$y=\sum_{i=1}^N w_i y_i$$

其中$N$为子网络的数量。

2.2 NNE的训练

NNE的训练可以使用任何标准的深度学习优化算法,例如随机梯度下降(Stochastic Gradient Descent,简称SGD)、Adam等。在训练过程中,需要同时更新所有子网络的参数和权重。具体来说,可以使用反向传播算法(Backpropagation,简称BP)计算梯度,并根据梯度进行参数和权重的更新。在更新权重时,可以使用任何标准的权重更新规则,例如加权平均、动量更新等。

2.3 NNE的优点

与传统的神经网络结构相比,NNE具有以下优点:

  • NNE可以充分利用多个子网络的优点,提高神经网络的表现和泛化能力。
  • NNE可以灵活地组合不同类型的神经网络层,适用于各种各样的任务和数据类型。
  • NNE可以通过优化子网络的权重和结构,进一步提高神经网络的表现和泛化能力。
  • NNE可以与各种各样的深度学习框架兼容,方便地应用于实际问题中。

3 封装正则化

3.1 封装正则化的定义

封装正则化是一种基于NNE的新型正则化方法,可以在训练过程中有效地控制模型的复杂度和泛化误差。具体来说,封装正则化是通过对NNE的权重进行正则化来实现的。设$W=(w_1,w_2,\cdots,w_N)$为NNE的权重向量,则封装正则化的目标是最小化以下正则化项:

$$\sum_{i=1}^N |w_i|^2$$

其中$|\cdot|$表示$L_2$范数。

3.2 封装正则化的训练

封装正则化的训练可以使用任何标准的深度学习优化算法,例如SGD、Adam等。在训练过程中,需要同时更新所有子网络的参数和权重,并对NNE的权重进行正则化。具体来说,可以使用反向传播算法计算梯度,并根据梯度进行参数和权重的更新。在更新权重时,需要注意加入正则化项的影响,具体来说,可以使用以下更新规则:

$$w_i\leftarrow w_i-\eta\left(\frac{\partial L}{\partial w_i}+2\lambda w_i\right)$$

其中$\eta$为学习率,$\lambda$为正则化系数,$L$为损失函数。

3.3 封装正则化的优点

与传统的正则化方法相比,封装正则化具有以下优点:

  • 封装正则化可以利用NNE的结构和信息,更加有效地控制模型的复杂度。
  • 封装正则化可以通过优化子网络的权重和结构,进一步提高神经网络的表现和泛化能力。
  • 封装正则化可以与各种各样的深度学习框架兼容,方便地应用于实际问题中。

注:仅截取主要部分翻译,完整内容请查看原文。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值