【详解】为何三元一次方程可以表示一个平面

首先如何确定一个平面?

1 知道平面的倾向角(比如知道一个平面与某个向量垂直)

2 知道整个平面过某个点

这样整个平面就被确定下来。

当 Ax+By+Cz=0

对于这个方程来说,也就是向量(A,B,C)与(x,y,z)垂直。

(x,y,z)可以表示空间中某个点,那么,假设有个平面,与(A,B,C)垂直,

这个平面恰好经过了点(x y z). 那么这个平面及与(A,B,C)垂直,且经过了一个点。

说明这个平面被确定下来

反过来说,这个平面上的所有的点,构成的平面与(A,B,C)垂直。

给出图片进行进一步说明:

假设 向量(A,B,C)就是Z轴,(x,y,z)这个点就在X轴和Y轴构成的平面上。

那么在这个平面上的所有的点构成的向量(单点构成向量,另一个点就是原点)都与(A,B,C)

垂直。

进一步分析,如果(A,B,C)就是Z轴,那说明A和B就是0。且C不是0,

Ax+By+Cz=0 就是,Cz = 0;(所以xy没有任何的限制)

由于Cz = 0; 而C不为0,所以z必须为零。此时x,y又没有任何的限制。那这个平面在哪,就不言而喻了。

所以,只要ABC定下来,xyz的关系就定下来了,那么这个平面就定下来了。所以说,三元一次方程可以表示一个平面。


当Ax+By+Cz=D,分解一下就可以变成,A(x-x0)+B(y-y0)+C(z-z0)=0

也就是向量(A,B,C)与(x-x0, y-y0, z-z0)垂直。

证明过程和上方一致。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code bean

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值