Cross-Modal Retrieval——为什么要使用GAN呢?

1 致谢

感谢于教授给我发的几篇论文,感到打开了一个新世界!

2 前言

今天在学习 Cross-Modal Retrieval~

在看文章的时候,看到有些比较新的文章是用GAN来做 Cross-Modal Retrieval,感觉到很奇怪,
为什么跨模态检索要用到GAN呢?
从我的直觉看来,不是只要生成合适的本征向量表示两种模态之间的距离就行了吗?
为啥要要用GAN模型呢?
然后在网上查找了一下资料,发现是存在这样一个距离,那就是,

如何找到一个特征子空间,使得具有不同标签的两个Object,不同模态的数据在特征子空间的表示具有可分性;而对于同一个Object,在不同模态下的数据在特征子空间的表示是不具有可分性的(或者说是基本一样的);

那么这个特征空间的映射器,我们就把它理解为GAN中的生成模型;

基于对抗的跨媒体检索Cross-modal retrieval aims to enable flexible retrieval experience across different modalities (e.g., texts vs. images). The core of crossmodal retrieval research is to learn a common subspace where the items of different modalities can be directly compared to each other. In this paper, we present a novel Adversarial Cross-Modal Retrieval (ACMR) method, which seeks an effective common subspace based on adversarial learning. Adversarial learning is implemented as an interplay between two processes. The first process, a feature projector, tries to generate a modality-invariant representation in the common subspace and to confuse the other process, modality classifier, which tries to discriminate between different modalities based on the generated representation. We further impose triplet constraints on the feature projector in order to minimize the gap among the representations of all items from different modalities with same semantic labels, while maximizing the distances among semantically different images and texts. Through the joint exploitation of the above, the underlying cross-modal semantic structure of multimedia data is better preserved when this data is projected into the common subspace. Comprehensive experimental results on four widely used benchmark datasets show that the proposed ACMR method is superior in learning effective subspace representation and that it significantly outperforms the state-of-the-art cross-modal retrieval methods.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值