Cross-Modal Retrieval——为什么要使用GAN呢?

1 致谢

感谢于教授给我发的几篇论文,感到打开了一个新世界!

2 前言

今天在学习 Cross-Modal Retrieval~

在看文章的时候,看到有些比较新的文章是用GAN来做 Cross-Modal Retrieval,感觉到很奇怪,
为什么跨模态检索要用到GAN呢?
从我的直觉看来,不是只要生成合适的本征向量表示两种模态之间的距离就行了吗?
为啥要要用GAN模型呢?
然后在网上查找了一下资料,发现是存在这样一个距离,那就是,

如何找到一个特征子空间,使得具有不同标签的两个Object,不同模态的数据在特征子空间的表示具有可分性;而对于同一个Object,在不同模态下的数据在特征子空间的表示是不具有可分性的(或者说是基本一样的);

那么这个特征空间的映射器,我们就把它理解为GAN中的生成模型;

基于对抗的跨媒体检索Cross-modal retrieval aims to enable flexible retrieval experience across different modalities (e.g., texts vs. images). The core of crossmodal retrieval research is to learn a common subspace where the items of different modalities can be directly compared to each other. In this paper, we present a novel Adversarial Cross-Modal Retrieval (ACMR) method, which seeks an effective common subspace based on adversarial learning. Adversarial learning is implemented as an interplay between two processes. The first process, a feature projector, tries to generate a modality-invariant representation in the common subspace and to confuse the other process, modality classifier, which tries to discriminate between different modalities based on the generated representation. We further impose triplet constraints on the feature projector in order to minimize the gap among the representations of all items from different modalities with same semantic labels, while maximizing the distances among semantically different images and texts. Through the joint exploitation of the above, the underlying cross-modal semantic structure of multimedia data is better preserved when this data is projected into the common subspace. Comprehensive experimental results on four widely used benchmark datasets show that the proposed ACMR method is superior in learning effective subspace representation and that it significantly outperforms the state-of-the-art cross-modal retrieval methods.
### 跨模态融合的技术与实现 跨模态融合(Cross-Modal Fusion)是指通过结合来自不同数据源的信息来提升模型性能的一种技术。这种技术广泛应用于视觉-语言表示学习、多感官交互等领域。以下是关于该主题的一些关键技术及其具体实现方式。 #### 多模态数据处理的基础理论 在机器学习领域,多种人工智能技术被用于改进资产定价准确性以及更广泛的多模态数据分析任务[^1]。这些技术包括但不限于机器学习、自然语言处理、深度学习等。其中,深度学习尤其擅长于提取复杂特征并将其映射到统一的空间中以便后续分析。 #### Bridge-Tower 方法论 一篇名为《Bridge-Tower: Building Bridges Between Encoders in Vision-Language Representation Learning》的论文介绍了一种新颖的方法——Bridge-Tower架构[^2]。此方法旨在解决视觉和语言之间的语义鸿沟问题。它通过构建连接两个编码器之间桥梁的方式实现了高效的跨模态信息传递。这种方法不仅提高了下游任务的表现力,还增强了对于未见过样本的理解能力。 #### 实现细节 为了更好地理解如何实际操作 cross-modal fusion,在 Python 中可以采用如下代码框架作为起点: ```python import torch from transformers import BertModel, ViTModel class CrossModalFusion(torch.nn.Module): def __init__(self): super(CrossModalFusion, self).__init__() # 初始化文本编码器 (BERT) self.text_encoder = BertModel.from_pretrained('bert-base-uncased') # 初始化图像编码器 (ViT) self.image_encoder = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') # 定义全连接层以进行联合嵌入空间投影 self.fc_text = torch.nn.Linear(768, 512) self.fc_image = torch.nn.Linear(768, 512) def forward(self, text_input_ids, image_pixel_values): text_output = self.text_encoder(text_input_ids).last_hidden_state[:,0,:] image_output = self.image_encoder(image_pixel_values).last_hidden_state[:,0,:] fused_text = self.fc_text(text_output) fused_image = self.fc_image(image_output) return fused_text, fused_image ``` 上述代码片段展示了如何利用预训练的语言模型 BERT 和视觉 Transformer 来创建一个多模态融合网络结构。通过对齐两种模式下的隐藏状态向量维度至相同大小后完成初步融合过程。 #### 总结 综上所述,跨模态融合涉及多个子领域的协同工作,从基础算法设计到高级应用开发均需深入研究。无论是基于传统统计学还是现代神经网络驱动方案,其核心目标始终围绕着提高异构数据间关联度展开探索。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值