CNN——NormLayer(BN、FRN)的学习笔记~

1 致谢

感谢网友wzy_zju提供的资料,链接如下:
https://blog.csdn.net/wzy_zju/article/details/81262453

2 前言

今天在学习CNN~
我之前一直对BN的作用还不是很明白,所以今天再来复习一下~
首先我们来看看关于 norm layer 的经典示意图
在这里插入图片描述

3 BN:Batch Normalization

3.1 BN所解决的问题

其实BN的效果跟图像归一化的效果是类似的,都是为了解决特征数值归一化的问题;

3.2 Batch Normalization的算法思路

这里我们可以参考一下原始论文的算法图:
在这里插入图片描述
γ \pmb{\gamma} γγ可学习参数,缩放因子;
β \pmb{\beta} ββ可学习参数,平移因子;
(这里“可学习参数”的意思是,这里的 γ \gamma γ β \beta β会跟其它权值一样参加BP的计算,也就是一个“普通的权值”)

3.3 BN的非线性

BN是一个非线性算子;
算子:算子是一个函数空间到函数空间上的映射 O : X → Y O: X\rightarrow Y O:XY
下面我们对BN层的非线性进行说明,这里采用一个简单的方法进行论证,BN层其实包含了两个算子操作:归一化算子和线性算子 γ x + β \gamma x + \beta γx+β
易知,线性算子 γ x + β \gamma x + \beta γx+β必然是线性的;
这里我们将第一层运算 x ^ i ← x i − μ B σ B 2 + ϵ \hat{x}_i \leftarrow \frac{x_i - \mu_\mathcal{B}}{\sqrt{\sigma^2_\mathcal{B}+\epsilon}} x^iσB2+ϵ xiμB看作是归一化操作, ϵ \epsilon ϵ为数值稳定项,在理论推导时看作 0 0 0
下面我们对归一化算子的非线性进行证明:
首先,看看线性算子的定义,线性算子需满足以下性质,设 X X X Y Y Y是两个线性空间, T T T X X X Y Y Y的映射,
T ( α x 1 + β x 2 ) = α T ( x 1 ) + β T ( x 2 ) T(\alpha x_1+ \beta x_2) =\alpha T\left ( x_1\right ) +\beta T\left(x_2\right) T(αx1+βx2)=αT(x1)+βT(x2)
等价于同时满足以下两个性质

  • 可加性: T ( x 1 + x 2 ) = T ( x 1 ) + T ( x 2 ) T(x_1+ x_2) =T\left ( x_1\right ) +T\left(x_2\right) T(x1+x2)=T(x1)+T(x2)
  • 齐次性: T ( k x 1 ) = k T ( x 1 ) T(k x_1) =kT\left ( x_1\right ) T(kx1)=kT(x1)

现在证明归一化算子 N N N不满足齐次性,
归一化算子的公式如下
N ( x ) = x − D ( x ) σ ( x ) N(x) = \frac{x-D(x)}{\sigma\left(x\right )} N(x)=σ(x)xD(x)
则有
N ( a x ) = a x − D ( a x ) σ ( a x ) = a x − a ⋅ D ( x ) a ⋅ σ ( x ) = x − ⋅ D ( x ) σ ( x ) = N ( x ) \begin{aligned} N(ax) &= \frac{ax-D(ax)}{\sigma\left(ax\right )}\\ & = \frac{ax-a\cdot D(x)}{a \cdot \sigma \left(x\right)}\\ & = \frac{x-\cdot D(x)}{\sigma \left(x\right)}\\ & = N\left(x\right) \end{aligned} N(ax)=σ(ax)axD(ax)=aσ(x)axaD(x)=σ(x)xD(x)=N(x)
不满足第二个性质,
∴ \therefore 归一化算子是非线性算子。

nn.BatchNorm2d()

BatchNorm2d包含以下五个内部参数:

  • weight:可学习权值参数,对应 γ \gamma γ
  • bias:可学习偏置参数,对应 β \beta β
  • running_mean:持久参数,记录分布的均值,对应 E [ x ] \text{E}[x] E[x]
  • running_var:持久参数,记录分布的方差,对应 Var [ x ] \text{Var}[x] Var[x]
  • num_batches_tracked

4 MABN——“BN variant”

MABN论文:Towards Stabilizing Batch Statistics in Backward Propagation of Batch Normalization
备注:在ShuffleNetv2中试了一下MABN,实验没有效果
在这里插入图片描述

5 FRN (Filter Response Normalization)

FRN是我在知乎上面看到的norm-layer,感觉还是有点帅的;
这里记录一下FRN的torch实现:

6 NormLayer的归一化代码理解

关于NormLayer的分布归一化的实现理解,请参考《PyTorch45——五种归一化的原理与代码逐行实现(BatchNorm/LayerNorm/InsNorm/GroupNorm/WeightNorm)》
这个教程使用PyTorch的计算函数验证了各种NormLayer的分布归一化的操作;

7 NormLayer类的继承关系

.: `Module` 
|--> `_NormBase`: norm-layer的基类
|  |--> `_BatchNorm`: BatchNorm层的基类  
| |-- components:组件代码,包括:HomePage  
| |-- file 
|-- examples.desktop  
|-- file  
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值