学习OpenCV2——卡尔曼滤波(KalmanFilter)详解

本文将简要回顾一下卡尔曼滤波理论,然后详细介绍如何在OpenCV中使用卡尔曼滤波进行跟踪,最后给两个程序实例。

1. 卡尔曼滤波理论回顾

      对于一个动态系统,我们首先定义一组状态空间方程

     状态方程:     

     测量方程:      

 

        xk是状态向量,zk是测量向量,Ak是状态转移矩阵,uk是控制向量,Bk是控制矩阵,wk是系统误差(噪声),Hk是测量矩阵,vk是测量误差(噪声)。wk和vk都是高斯噪声,即

                              

    整个卡尔曼滤波的过程就是个递推计算的过程,不断的“预测——更新——预测——更新……”

预测

     预测状态值:              

     预测最小均方误差:   

更新

    测量误差:                   

    测量协方差:                

    最优卡尔曼增益:         

    修正状态值:                

    修正最小均方误差:     

 

2.OpenCV中的KalmanFilter详解

OpenCV中有两个版本的卡尔曼滤波方法KalmanFilter(C++)和CvKalman(C),用法差不太多,这里只介绍KalmanFilter。

 

C++版本中将KalmanFilter封装到一个类中,其结构如下所示:

 
  1. class CV_EXPORTS_W KalmanFilter

  2. {

  3. public:

  4. CV_WRAP KalmanFilter(); //构造默认KalmanFilter对象

  5. CV_WRAP KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);  //完整构造KalmanFilter对象方法

  6. void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F); //初始化KalmanFilter对象,会替换原来的KF对象

  7.  
  8. CV_WRAP const Mat& predict(const Mat& control=Mat()); //计算预测的状态值

  9. CV_WRAP const Mat& correct(const Mat& measurement); //根据测量值更新状态值

  10.  
  11. Mat statePre; //预测值 (x'(k)): x(k)=A*x(k-1)+B*u(k)

  12. Mat statePost; //状态值 (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))

  13. Mat transitionMatrix; //状态转移矩阵 (A)

  14. Mat controlMatrix; //控制矩阵 B

  15. Mat measurementMatrix; //测量矩阵 H

  16. Mat processNoiseCov; //系统误差 Q

  17. Mat measurementNoiseCov; //测量误差 R

  18. Mat errorCovPre; //最小均方误差 (P'(k)): P'(k)=A*P(k-1)*At + Q)

  19. Mat gain; //卡尔曼增益 (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)

  20. Mat errorCovPost; //修正的最小均方误差 (P(k)): P(k)=(I-K(k)*H)*P'(k)

  21.  
  22. // 临时矩阵

  23. Mat temp1;

  24. Mat temp2;

  25. Mat temp3;

  26. Mat temp4;

  27. Mat temp5;

  28. };

  29.  
  30. enum

  31. {

  32. OPTFLOW_USE_INITIAL_FLOW = CV_LKFLOW_INITIAL_GUESSES,

  33. OPTFLOW_LK_GET_MIN_EIGENVALS = CV_LKFLOW_GET_MIN_EIGENVALS,

  34. OPTFLOW_FARNEBACK_GAUSSIAN = 256

  35. };

 

       函数原型见:…..\OpenCV2\sources\modules\ocl\src\kalman.cpp

       只有四个方法: 构造KF对象KalmanFilter(DP,MP,CP)、初始化KF对象init(DP,MP,CP)、预测predict( )、更新correct( )。除非你要重新构造KF对象,否则用不到init( )。

KalmanFilter(DP,MP,CP)和init( )就是赋值,没什么好说的。

      注意:KalmanFilter结构体中并没有测量值,测量值需要自己定义,而且一定要定义,因为后面要用。

 

编程步骤

step1:定义KalmanFilter类并初始化

    //构造KF对象

    KalmanFilter KF(DP, MP, 0);

    //初始化相关参数

    KF.transitionMatrix                         转移矩阵 A

    KF.measurementMatrix                  测量矩阵    H

    KF.processNoiseCov                     过程噪声 Q

    KF.measurementNoiseCov            测量噪声        R

    KF.errorCovPost                            最小均方误差 P

    KF.statePost                                系统初始状态 x(0) 

    Mat measurement                          定义初始测量值 z(0) 

step2:预测

    KF.predict( )                                                 //返回的是下一时刻的状态值KF.statePost (k+1) 

step3:更新

    更新measurement;                                     //注意measurement不能通过观测方程进行计算得到,要自己定义!

    更新KF   KF.correct(measurement)

最终的结果应该是更新后的statePost.

 

相关参数的确定

    对于系统状态方程,简记为Y=AX+B,X和Y是表示系统状态的列向量,A是转移矩阵,B是其他项。

    状态值(向量)只要能表示系统的状态即可,状态值的维数决定了转移矩阵A的维数,比如X和Y是N×1的,则A是N×N的。

    A的确定跟X有关,只要保证方程中不相干项的系数为0即可,看下面例子

      X和Y是二维的,

 

       X和Y是三维的,

 

 

          X和Y是三维的,但c和△ c是相关项

 

 

 

 

      上面的1也可以是其他值。

 

 

下面对predict( ) 和correct( )函数介绍下,可以不用看,不影响编程。

 

 
  1. CV_EXPORTS const oclMat& KalmanFilter::predict(const oclMat& control)

  2. {

  3. gemm(transitionMatrix, statePost, 1, oclMat(), 0, statePre);

  4. oclMat temp;

  5.  
  6. if(control.data)

  7. gemm(controlMatrix, control, 1, statePre, 1, statePre);

  8. gemm(transitionMatrix, errorCovPost, 1, oclMat(), 0, temp1);

  9. gemm(temp1, transitionMatrix, 1, processNoiseCov, 1, errorCovPre, GEMM_2_T);

  10. statePre.copyTo(statePost);

  11. return statePre;

  12. }

 

gemm( )是矩阵的广义乘法

 

void gemm(const GpuMat& src1, constGpuMat& src2, double alpha, const GpuMat& src3, double beta,GpuMat& dst, int flags=0, Stream& stream=Stream::Null())

    dst = alpha · src1 · src2 +beta· src3

   上面,oclMat()其实是uk,只不过默认为0,所以没赋值。整个过程就计算了x'和P’。(用x'代表x的预测值,用P'代表P的预测值)。GEMM_2_T表示对第2个参数转置。

 

x’(k)=1·A·x(k-1)

如果B非空, x'(k) = 1·B·u + 1·x'(k-1)

temp1 = 1·A·P(k-1) + 0·u(k)

P’(k) = 1· temp1·AT + 1· Qk= A·P(k-1)·AT + 1· Qk

       可见,和第一部分的理论介绍完全一致。

 

 
  1. CV_EXPORTS const oclMat& KalmanFilter::correct(const oclMat& measurement)

  2. {

  3. CV_Assert(measurement.empty() == false);

  4. gemm(measurementMatrix, errorCovPre, 1, oclMat(), 0, temp2);

  5. gemm(temp2, measurementMatrix, 1, measurementNoiseCov, 1, temp3, GEMM_2_T);

  6. Mat temp;

  7. solve(Mat(temp3), Mat(temp2), temp, DECOMP_SVD);

  8. temp4.upload(temp);

  9. gain = temp4.t();

  10. gemm(measurementMatrix, statePre, -1, measurement, 1, temp5);

  11. gemm(gain, temp5, 1, statePre, 1, statePost);

  12. gemm(gain, temp2, -1, errorCovPre, 1, errorCovPost);

  13. return statePost;

  14. }

bool solve(InputArray src1, InputArray src2, OutputArray dst, int flags=DECOMP_LU)

 

 

求解线型最小二乘估计

 
 

temp2 = 1· H·P’ + 0·u(k)

temp3 = 1· temp2·HT + 1·R = H·P’·HT+ 1· R   也就是上面的Sk

temp = argmin||tem2- temp3||

K=temp

temp5 = -1· H·x’ + 1·zk        就是上面的y’。

x = 1·K·temp5 + 1·x’ = KT·y’ +x’

P =-1·K·temp2 + 1·P’ = -K·H·P’+P’ = (I- K·H) P’

也和第一部分的理论完全一致。

 

通过深入函数内部,学到了两个实用的函数哦。矩阵广义乘法gemm( )、最小二乘估计solve( )

 

补充

1)以例2为例,为什么状态值一般都设置成(x,y,△x,△y)?我们不妨设置成(x,y,△x),对应的转移矩阵也改成3×3的。可以看到仍能跟上,不过在x方向跟踪速度快,在y方向跟踪速度慢。进一步设置成(x,y)和2×2的转移矩阵,程序的跟踪速度简直是龟速。所以,简单理解,△x和△y严重影响对应方向上的跟踪速度。

 

 

3.实例

例1 OpenCV自带的示例程序

 

 
  1. #include "opencv2/video/tracking.hpp"

  2. #include "opencv2/highgui/highgui.hpp"

  3. #include <iostream>

  4. #include <stdio.h>

  5. using namespace std;

  6. using namespace cv;

  7.  
  8. //计算相对窗口的坐标值,因为坐标原点在左上角,所以sin前有个负号

  9. static inline Point calcPoint(Point2f center, double R, double angle)

  10. {

  11. return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;

  12. }

  13.  
  14. static void help()

  15. {

  16. printf( "\nExamle of c calls to OpenCV's Kalman filter.\n"

  17. " Tracking of rotating point.\n"

  18. " Rotation speed is constant.\n"

  19. " Both state and measurements vectors are 1D (a point angle),\n"

  20. " Measurement is the real point angle + gaussian noise.\n"

  21. " The real and the estimated points are connected with yellow line segment,\n"

  22. " the real and the measured points are connected with red line segment.\n"

  23. " (if Kalman filter works correctly,\n"

  24. " the yellow segment should be shorter than the red one).\n"

  25. "\n"

  26. " Pressing any key (except ESC) will reset the tracking with a different speed.\n"

  27. " Pressing ESC will stop the program.\n"

  28. );

  29. }

  30.  
  31. int main(int, char**)

  32. {

  33. help();

  34. Mat img(500, 500, CV_8UC3);

  35. KalmanFilter KF(2, 1, 0); //创建卡尔曼滤波器对象KF

  36. Mat state(2, 1, CV_32F); //state(角度,△角度)

  37. Mat processNoise(2, 1, CV_32F);

  38. Mat measurement = Mat::zeros(1, 1, CV_32F); //定义测量值

  39. char code = (char)-1;

  40.  
  41. for(;;)

  42. {

  43. //1.初始化

  44. randn( state, Scalar::all(0), Scalar::all(0.1) ); //

  45. KF.transitionMatrix = *(Mat_<float>(2, 2) << 1, 1, 0, 1); //转移矩阵A[1,1;0,1]

  46.  
  47.  
  48. //将下面几个矩阵设置为对角阵

  49. setIdentity(KF.measurementMatrix); //测量矩阵H

  50. setIdentity(KF.processNoiseCov, Scalar::all(1e-5)); //系统噪声方差矩阵Q

  51. setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1)); //测量噪声方差矩阵R

  52. setIdentity(KF.errorCovPost, Scalar::all(1)); //后验错误估计协方差矩阵P

  53.  
  54. randn(KF.statePost, Scalar::all(0), Scalar::all(0.1)); //x(0)初始化

  55.  
  56. for(;;)

  57. {

  58. Point2f center(img.cols*0.5f, img.rows*0.5f); //center图像中心点

  59. float R = img.cols/3.f; //半径

  60. double stateAngle = state.at<float>(0); //跟踪点角度

  61. Point statePt = calcPoint(center, R, stateAngle); //跟踪点坐标statePt

  62.  
  63. //2. 预测

  64. Mat prediction = KF.predict(); //计算预测值,返回x'

  65. double predictAngle = prediction.at<float>(0); //预测点的角度

  66. Point predictPt = calcPoint(center, R, predictAngle); //预测点坐标predictPt

  67.  
  68.  
  69. //3.更新

  70. //measurement是测量值

  71. randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0))); //给measurement赋值N(0,R)的随机值

  72.  
  73. // generate measurement

  74. measurement += KF.measurementMatrix*state; //z = z + H*x;

  75.  
  76. double measAngle = measurement.at<float>(0);

  77. Point measPt = calcPoint(center, R, measAngle);

  78.  
  79. // plot points

  80. //定义了画十字的方法,值得学习下

  81. #define drawCross( center, color, d ) \

  82. line( img, Point( center.x - d, center.y - d ), \

  83. Point( center.x + d, center.y + d ), color, 1, CV_AA, 0); \

  84. line( img, Point( center.x + d, center.y - d ), \

  85. Point( center.x - d, center.y + d ), color, 1, CV_AA, 0 )

  86.  
  87. img = Scalar::all(0);

  88. drawCross( statePt, Scalar(255,255,255), 3 );

  89. drawCross( measPt, Scalar(0,0,255), 3 );

  90. drawCross( predictPt, Scalar(0,255,0), 3 );

  91. line( img, statePt, measPt, Scalar(0,0,255), 3, CV_AA, 0 );

  92. line( img, statePt, predictPt, Scalar(0,255,255), 3, CV_AA, 0 );

  93.  
  94.  
  95. //调用kalman这个类的correct方法得到加入观察值校正后的状态变量值矩阵

  96. if(theRNG().uniform(0,4) != 0)

  97. KF.correct(measurement);

  98.  
  99. //不加噪声的话就是匀速圆周运动,加了点噪声类似匀速圆周运动,因为噪声的原因,运动方向可能会改变

  100. randn( processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0)))); //vk

  101. state = KF.transitionMatrix*state + processNoise;

  102.  
  103. imshow( "Kalman", img );

  104. code = (char)waitKey(100);

  105.  
  106. if( code > 0 )

  107. break;

  108. }

  109. if( code == 27 || code == 'q' || code == 'Q' )

  110. break;

  111. }

  112.  
  113. return 0;

  114. }

程序结果

 

 

例2  跟踪鼠标位置

在我介绍粒子滤波的博文“学习Opencv2——粒子滤波Condensation算法”里,有个例3,是跟踪鼠标位置。现在我们用卡尔曼滤波来实现。

 

 
  1. #include "opencv2/video/tracking.hpp"

  2. #include "opencv2/highgui/highgui.hpp"

  3. #include <stdio.h>

  4. using namespace cv;

  5. using namespace std;

  6.  
  7. const int winHeight=600;

  8. const int winWidth=800;

  9.  
  10.  
  11. Point mousePosition= Point(winWidth>>1,winHeight>>1);

  12.  
  13. //mouse event callback

  14. void mouseEvent(int event, int x, int y, int flags, void *param )

  15. {

  16. if (event==CV_EVENT_MOUSEMOVE) {

  17. mousePosition = Point(x,y);

  18. }

  19. }

  20.  
  21. int main (void)

  22. {

  23. RNG rng;

  24. //1.kalman filter setup

  25. const int stateNum=4; //状态值4×1向量(x,y,△x,△y)

  26. const int measureNum=2; //测量值2×1向量(x,y)

  27. KalmanFilter KF(stateNum, measureNum, 0);

  28.  
  29. KF.transitionMatrix = *(Mat_<float>(4, 4) <<1,0,1,0,0,1,0,1,0,0,1,0,0,0,0,1); //转移矩阵A

  30. setIdentity(KF.measurementMatrix); //测量矩阵H

  31. setIdentity(KF.processNoiseCov, Scalar::all(1e-5)); //系统噪声方差矩阵Q

  32. setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1)); //测量噪声方差矩阵R

  33. setIdentity(KF.errorCovPost, Scalar::all(1)); //后验错误估计协方差矩阵P

  34. rng.fill(KF.statePost,RNG::UNIFORM,0,winHeight>winWidth?winWidth:winHeight); //初始状态值x(0)

  35. Mat measurement = Mat::zeros(measureNum, 1, CV_32F); //初始测量值x'(0),因为后面要更新这个值,所以必须先定义

  36.  
  37. namedWindow("kalman");

  38. setMouseCallback("kalman",mouseEvent);

  39.  
  40. Mat image(winHeight,winWidth,CV_8UC3,Scalar(0));

  41.  
  42. while (1)

  43. {

  44. //2.kalman prediction

  45. Mat prediction = KF.predict();

  46. Point predict_pt = Point(prediction.at<float>(0),prediction.at<float>(1) ); //预测值(x',y')

  47.  
  48. //3.update measurement

  49. measurement.at<float>(0) = (float)mousePosition.x;

  50. measurement.at<float>(1) = (float)mousePosition.y;

  51.  
  52. //4.update

  53. KF.correct(measurement);

  54.  
  55. //draw

  56. image.setTo(Scalar(255,255,255,0));

  57. circle(image,predict_pt,5,Scalar(0,255,0),3); //predicted point with green

  58. circle(image,mousePosition,5,Scalar(255,0,0),3); //current position with red

  59.  
  60. char buf[256];

  61. sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y);

  62. putText(image,buf,Point(10,30),CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,Scalar(0,0,0),1,8);

  63. sprintf_s(buf,256,"current position :(%3d,%3d)",mousePosition.x,mousePosition.y);

  64. putText(image,buf,cvPoint(10,60),CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,Scalar(0,0,0),1,8);

  65.  
  66. imshow("kalman", image);

  67. int key=waitKey(3);

  68. if (key==27){//esc

  69. break;

  70. }

  71. }

  72. }


结果

 

 

 

例3 

 
  1. #include "opencv2/video/tracking.hpp"

  2. #include <opencv2/legacy/legacy.hpp> //#include "cvAux.h"

  3. #include <opencv2/highgui/highgui.hpp>

  4. #include <opencv2/core/core.hpp>

  5. #include <stdio.h>

  6.  
  7. using namespace cv;

  8. using namespace std;

  9.  
  10. int main( )

  11. {

  12. float A[10][3] =

  13. {

  14. 10, 50, 15.6,

  15. 12, 49, 16,

  16. 11, 52, 15.8,

  17. 13, 52.2, 15.8,

  18. 12.9, 50, 17,

  19. 14, 48, 16.6,

  20. 13.7, 49, 16.5,

  21. 13.6, 47.8, 16.4,

  22. 12.3, 46, 15.9,

  23. 13.1, 45, 16.2

  24. };

  25.  
  26. const int stateNum=3;

  27. const int measureNum=3;

  28. KalmanFilter KF(stateNum, measureNum, 0);

  29. KF.transitionMatrix = *(Mat_<float>(3, 3) <<1,0,0,0,1,0,0,0,1); //转移矩阵A

  30. setIdentity(KF.measurementMatrix); //测量矩阵H

  31. setIdentity(KF.processNoiseCov, Scalar::all(1e-5)); //系统噪声方差矩阵Q

  32. setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1)); //测量噪声方差矩阵R

  33. setIdentity(KF.errorCovPost, Scalar::all(1));

  34. Mat measurement = Mat::zeros(measureNum, 1, CV_32F);

  35.  
  36. //初始状态值

  37. KF.statePost = *(Mat_<float>(3, 1) <<A[0][0],A[0][1],A[0][2]);

  38. cout<<"state0="<<KF.statePost<<endl;

  39.  
  40. for(int i=1;i<=9;i++)

  41. {

  42. //预测

  43. Mat prediction = KF.predict();

  44. //计算测量值

  45. measurement.at<float>(0) = (float)A[i][0];

  46. measurement.at<float>(1) = (float)A[i][1];

  47. measurement.at<float>(2) = (float)A[i][2];

  48. //更新

  49. KF.correct(measurement);

  50. //输出结果

  51. cout<<"predict ="<<"\t"<<prediction.at<float>(0)<<"\t"<<prediction.at<float>(1)<<"\t"<<prediction.at<float>(2)<<endl;

  52. cout<<"measurement="<<"\t"<<measurement.at<float>(0)<<"\t"<<measurement.at<float>(1)<<"\t"<<measurement.at<float>(2)<<endl;

  53. cout<<"correct ="<<"\t"<<KF.statePost.at<float>(0)<<"\t"<<KF.statePost.at<float>(1)<<"\t"<<KF.statePost.at<float>(2)<<endl;

  54. }

  55. system("pause");

  56. }

结果如下


 

这里预测值和上一个状态值一样,原因是转移矩阵A是单位阵,如果改成非单位阵,结果就不一样了。

  • 4
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值