提示词加神秘咒语让大模型更加聪明

谷歌团队研究发现,提示词加上神秘咒语深呼吸(take a deep breath)结合大家已经熟悉的“一步一步地想”(Let’s think step by step),大模型在数据集上的成绩就提升了12%。而且这个最有效的提示词,是AI自己找出来的。

117c35476dd66c9ece242b5087ceadf8.jpeg

论文:大语言模型的自我优化

论文来源:https://arxiv.org/abs/2309.03409

论文来自谷歌与DeepMind合并后的部门,但作者以原谷歌大脑团队为主,包括Quoc Le、周登勇。共同作者为康奈尔大学博士毕业的复旦校友Chengrun Yang和UC伯克利博士毕业的上交大校友陈昕昀。

众所周知:不同模型的最佳提示词不一样,该论文研究发现大模型自己设计的提示词在Big-Bench Hard数据集上最高提升50%。并且不止提示词设计这一个任务,在论文中还测试了大模型在线性回归和旅行商问题这些经典优化任务上的能力。 

bf8cce016c0acdb13796e39f3d807d79.jpeg

模型不同,最佳提示词也不同

优化问题无处不在,基于导数和梯度的算法是强大的工具,但现实应用中也经常遇到梯度不适用的情况。为解决这个问题,团队开发了新方法OPRO,也就是通过提示词优化(Optimization by PROmpting)。

不是形式化定义优化问题然后用程序求解,而是用自然语言描述优化问题,并要求大模型生成新的解决方案。

一图流总结,就是对大模型的一种递归调用。

02e7fefec01b6785afbeac1a99b18088.jpeg

每一步优化中,以之前生成的解决方案和评分作为输入,大模型生成新的方案并评分,再将其添加到提示词中,供下一步优化使用。

57a23442513984e9cca7b8428b75e701.jpeg

论文主要使用谷歌的PaLM 2和Bard中的text-bison版本作为评测模型。再加上GPT-3.5和GPT-4,共4种模型作为优化器。结果表明,不光不同模型设计出的提示词风格不同,适用的提示词风格也不同。

此前在GPT系列上的AI设计出的最优提示词是“Let’s work this out in a step by step way to be sure we have the right answer.”

这个提示词使用APE方法设计,论文发表在ICLR 2023上,在GPT-3(text-davinci-002)上超过人类设计的版本“Let’s think step by step”

但这次在谷歌系PaLM 2和Bard上,APE版本作为基线就还不如人类版本。

2ecdc5fb749c8866a8419036bd7b2488.jpeg

OPRO方法设计出来的新提示词中,“深呼吸”和“拆解这个问题”对PaLM来说效果最好。对text-bison版的Bard大模型来说,则更倾向于详细的提示词。

另外论文还展示了大模型在数学优化器上的潜力。

线性回归作为连续优化问题的示例

2e7af61b349efff928692fb7fcc528ea.jpeg

旅行商问题作为离散优化问题的示例。

0b9be1a59e3c23c00dd49779d1ee6d6c.jpeg

仅仅通过提示,大模型就能找到不错的解决方案,有时甚至匹敌或超过手动设计的启发式算法。但团队也认为大模型还无法替代传统基于梯度的优化算法,当问题规模较大(如节点数量较多的旅行商问题)时,OPRO方法表现就不好。

对于未来改进方向,团队提出当前大模型还无法有效利错误案例,仅提供错误案例无法让大模型捕捉捕捉到错误的原因。一个有前景的方向是结合关于错误案例的更丰富的反馈,并总结优化轨迹中高质量和低质量生成提示的关键特征差异。这些信息可能帮助优化器模型更高效地改进过去生成的提示,并可能进一步减少提示优化所需的样本数量。

团队还在论文中给出了大量实验中得到的最优提示词,包括电影推荐、恶搞电影名字等实用场景,小伙伴可自取神秘咒语。


### AI艺术创作中的常见角色姿势提示词 在AI绘画领域,尤其是基于文本到图像模型(如 Stable Diffusion),提示词的设计对于生成高质量的人物姿态至关重要。以下是几个常见的用于生成人物姿态的提示词合集: #### 1. 基本站立姿势 为了生成一个人物基本的站立姿态,可以使用如下提示词: ```plaintext A person standing confidently, arms relaxed at sides, feet shoulder-width apart, realistic anatomy, detailed face, high detail, photorealistic style. ``` 这种描述强调了身体比例的真实性和细节的表现力[^2]。 #### 2. 动态行走动作 如果希望生成动态行走的姿态,则可尝试以下提示词: ```plaintext Dynamic walking pose of a character with one foot forward and the other slightly behind, natural arm swing motion, energetic movement, cinematic lighting. ``` 此提示通过具体的肢体位置定义以及光影效果增强了画面动感[^3]。 #### 3. 跳跃场景 跳跃类的动作通常需要更夸张的身体弯曲度和空间感,下面是一个例子: ```plaintext Character leaping into air mid-motion, legs spread wide, arms extended upwards for balance, dynamic composition, vibrant energy, fantasy art style. ``` 这里入了风格化元素使整体更具视觉冲击力[^4]。 #### 4. 手势特写 当专注于手部或其他局部部位时,精确的语言表达尤为重要: ```plaintext Close-up shot of hands performing delicate task such as painting or sculpting; fingers gracefully curved around brush/tool handle; intricate textures visible on skin surface. ``` 以上每种类型的提示都包含了尽可能多的具体参数设定以便更好地指导算法工作方向并获得预期结果。 ```python def generate_pose(prompt): """ Function to simulate generating an image based on given prompt. Args: prompt (str): The textual description that will be converted into visual content by some hypothetical function here represented symbolically only. Returns: str: A message indicating successful generation process hypothetically speaking within this context. """ return f"Image generated successfully according to your provided '{prompt}'." example_prompts = [ "A person standing confidently...", "Dynamic walking pose ...", "Character leaping into air..." ] for p in example_prompts: print(generate_pose(p)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值