私有化部署DeepSeek-R1 671B,公司内部团队使用

一、背景与目标

随着深度学习技术的高速发展,越来越多的企业选择在内部搭建大模型推理与训练平台,以确保数据安全、降低外部依赖并满足企业级自定义需求。DeepSeek-R1 671B 作为一款超大规模预训练模型,具有强大的自然语言处理与理解能力,适合在文本生成、知识问答、内容审核等企业场景中提供高质量的解决方案。

本报告主要介绍如何在公司内部使用以下环境完成 DeepSeek-R1 671B 模型的私有化部署:

  • 硬件环境
    • CPU:ThreadRipper 7980X * 1
    • GPU:RTX 4090 * 4(总显存 96GB)
    • 内存:96 GB * 4(总计 384GB)
    • 存储:SSD 2TB * 1
  • 软件环境
    • 操作系统:CentOS 8.2
    • Python:3.10+
    • 管理工具:Ollama
    • 前端可视化 UI:AnythingLLM

在本次部署方案中,我们的目标是:

  1. 离线部署,保证数据安全与快速响应;
  2. 使用 Ollama 进行统一管理与调度;
  3. 通过 AnythingLLM 提供友好的可视化界面;
  4. 确保模型的推理性能与稳定性,支持企业内部多并发访问;
  5. 后续可扩展为微调场景或上线更多模型。

二、环境参数与前期准备

1. 硬件参数核对与 BIOS 配置

  1. CPU 与内存
    • 线程撕裂者(ThreadRipper)系列 CPU 通常支持较高并发与多通道内存。请在 BIOS 中检查内存通道是否全部开启,保证 4 条 96GB 内存均处于可用状态,并充分利用 NUMA 特性。
  2. GPU 检查
    • 确认 4 块 RTX 4090 均正常安装,驱动已正确识别,执行 nvidia-smi 确认显存总量(96GB)是否与预期一致。
    • 若需考虑运维性,可将 GPU 风扇与功耗模式设置为合适档位,以平衡性能与能耗。
  3. 存储空间
    • SSD 2TB 可安装系统与存放初步部署文件,若模型文件体积较大,可考虑使用多块 SSD 或网络存储(如 NAS)。
  4. 电源与散热
    • 深度学习工作负载大,需确保电源稳定,以及机箱具备良好的散热方案。

2. 系统与软件依赖

  1. 操作系统
    • CentOS 8.2,建议开启自动更新或定期手动更新安全补丁;
    • 若有生产环境安全合规要求,可加装 SELinux 或其他企业级安全方案;

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值