一、背景与目标
随着深度学习技术的高速发展,越来越多的企业选择在内部搭建大模型推理与训练平台,以确保数据安全、降低外部依赖并满足企业级自定义需求。DeepSeek-R1 671B 作为一款超大规模预训练模型,具有强大的自然语言处理与理解能力,适合在文本生成、知识问答、内容审核等企业场景中提供高质量的解决方案。
本报告主要介绍如何在公司内部使用以下环境完成 DeepSeek-R1 671B 模型的私有化部署:
- 硬件环境
- CPU:ThreadRipper 7980X * 1
- GPU:RTX 4090 * 4(总显存 96GB)
- 内存:96 GB * 4(总计 384GB)
- 存储:SSD 2TB * 1
- 软件环境
- 操作系统:CentOS 8.2
- Python:3.10+
- 管理工具:Ollama
- 前端可视化 UI:AnythingLLM
在本次部署方案中,我们的目标是:
- 离线部署,保证数据安全与快速响应;
- 使用 Ollama 进行统一管理与调度;
- 通过 AnythingLLM 提供友好的可视化界面;
- 确保模型的推理性能与稳定性,支持企业内部多并发访问;
- 后续可扩展为微调场景或上线更多模型。
二、环境参数与前期准备
1. 硬件参数核对与 BIOS 配置
- CPU 与内存
- 线程撕裂者(ThreadRipper)系列 CPU 通常支持较高并发与多通道内存。请在 BIOS 中检查内存通道是否全部开启,保证 4 条 96GB 内存均处于可用状态,并充分利用 NUMA 特性。
- GPU 检查
- 确认 4 块 RTX 4090 均正常安装,驱动已正确识别,执行
nvidia-smi
确认显存总量(96GB)是否与预期一致。 - 若需考虑运维性,可将 GPU 风扇与功耗模式设置为合适档位,以平衡性能与能耗。
- 确认 4 块 RTX 4090 均正常安装,驱动已正确识别,执行
- 存储空间
- SSD 2TB 可安装系统与存放初步部署文件,若模型文件体积较大,可考虑使用多块 SSD 或网络存储(如 NAS)。
- 电源与散热
- 深度学习工作负载大,需确保电源稳定,以及机箱具备良好的散热方案。
2. 系统与软件依赖
- 操作系统
- CentOS 8.2,建议开启自动更新或定期手动更新安全补丁;
- 若有生产环境安全合规要求,可加装 SELinux 或其他企业级安全方案;