[Sklearn应用] Feature Selection 特征选择(一) SelectFromModel

本文介绍了Sklearn库中的feature_selection模块,特别是SelectFromModel类在特征选择中的应用。SelectFromModel可以与具有coef_或feature_importances_属性的估计器一起使用,通过设定阈值来去除不重要的特征。它支持L1-based和Tree-based特征选择,如Lasso回归和决策树等,用于降低维度并提升模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此内容在sklearn官网地址: http://scikit-learn.org/stable/modules/feature_selection.html
sklearn版本:0.18.2

sklearn.feature_selection

  The module can be used for feature selection/dimensionality reduction on sample sets, either to improve estimators’ accuracy scores or to boost their performance on very high-dimensional datasets.
  用于特征选择/降维,可提高精度和性能。

特征选择有很多种方式,下面讲第一种:通过SelectFromModel选择。

sklearn.feature_selection.SelectFromModel

 SelectFromModel is a meta-transformer that can be used along with any estimator that has a coef_ or feature_importances_ attribute after

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值