svm算法学习

1.与knn算法的区别

KNN分类问题,离哪些点较近,就归哪一类。

SVM分类问题,找决策边界,把数据进行划分开。

注意:支持向量是要小的,决策边界是要大的

先找支持向量,再找决策边界

2.距离计算公式

简化最终目标函数

 极大值问题转化为极小值问题

5.核函数 

不好分类时,升维,二位的变成三维的,可能能够很好的用平面分开。

6.运行

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值