记杨老师的开学第一课(欧拉公式)

初一的第一堂数学课,杨老师给出这么一个题:

Q:正多面体一共有多少种?为什么?

A:
首先有欧拉公式
V + F = E + 2 V+F=E+2 V+F=E+2

点 + 面 = 棱 + 2 点 +面 = 棱 + 2 +=+2
证明:
将一个多面体在平面上拍扁
在这里插入图片描述
引理1:多面体的某一个 n n n 边形拍扁后还是一个 n n n 边形
引理2:拍扁后 F , V , E F,V,E F,V,E 均不变
考虑利用内角和恒等关系证明
假设 F F F 个多边形分别有 n 1 , n 2 , . . . , n F n_1,n_2,...,n_F n1,n2,...,nF 条边,那么内角和为
∑ i ( n i − 2 ) π = π ∗ ∑ i n i − 2 ∗ F ∗ π \sum_i(n_i-2)\pi=\pi*\sum_in_i-2*F*\pi i(ni2)π=πini2Fπ
注意到
∑ i n i = 2 ∗ E \sum_i n_i=2*E ini=2E
所以内角和为 2 ∗ π ∗ ( E − F ) 2*\pi *(E-F) 2π(EF)
接下来换一种方式计算内角和
多边形中的每一个点有 2 ∗ π 2*\pi 2π 的贡献,设最大的多边形点数为 m m m,那么内点数为 V − m V-m Vm
于是对内角和有 ( V − m ) ∗ 2 ∗ π (V-m)*2*\pi (Vm)2π 的贡献
并且注意到最外面的 m m m 2 ∗ ( m − 2 ) ∗ π 2*(m-2)*\pi 2(m2)π 的贡献,因为每个角要算两次
所以内角和为 2 ∗ π ∗ ( V − 2 ) 2*\pi *(V-2) 2π(V2)
于是有 E − F = V − 2 E-F=V-2 EF=V2,得证


回到这一道题:
设正多面体的每一个面为正 n n n 边形,每个顶点有 m m m 条棱
于是有
n ∗ F = 2 ∗ E ⇒ F = 2 ∗ E n n*F=2*E\Rightarrow F=\frac{2*E}{n} nF=2EF=n2E
m ∗ V = 2 ∗ E ⇒ V = 2 ∗ E m m*V=2*E\Rightarrow V=\frac{2*E}{m} mV=2EV=m2E
所以有
2 n ∗ E + 2 m ∗ E − E = 2 \frac{2}{n}*E+\frac{2}{m}*E-E=2 n2E+m2EE=2
⇒ 1 n + 1 m = 1 E + 1 2 > 1 2 \Rightarrow \frac{1}{n}+\frac{1}{m}=\frac{1}{E}+\frac{1}{2}>\frac{1}{2} n1+m1=E1+21>21
寻找 n , m n,m n,m 的限制条件,显然 n , m n,m n,m 不同大于 3
n , m n,m n,m 本身的定义, n ≥ 3 , m ≥ 3 n\ge 3,m\ge 3 n3,m3,所以 n , m n,m n,m 中至少有一个为 3

n = 3 n=3 n=3 时, m < 6 m<6 m<6
m = 3 m=3 m=3 时, n < 6 n<6 n<6
验证可得存在以下解
( n , m ) = ( 3 , 3 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 4 , 3 ) , ( 5 , 3 ) (n,m)=(3,3),(3,4),(3,5),(4,3),(5,3) (n,m)=(3,3),(3,4),(3,5),(4,3),(5,3)
所有共存在 5 种正多面体

晚上划水的时候偶然翻到了初一时记下的稚嫩的笔记。
决定把这道巧妙的题记录下来。
感谢杨老师对我们的辛勤培育与费心操劳!
初中毕业快大半年了,时常梦想到自己回到初中的校园。
真的非常思念您,您是我人生中遇见的非常非常重要的老师!

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值