小 H 爱染色

写出答案的式子
∑ i f ( i ) [ ( n − i m ) 2 − ( n − i − 1 m ) 2 ] \sum_{i}^{}f(i)\Big[\binom{n-i}{m}^2-\binom{n-i-1}{m}^2\Big] if(i)[(mni)2(mni1)2]
是关于 n n n 3 m + 1 3m+1 3m+1 次多项式,我们需要知道各个点值
利用 f ( k ) = ∑ i f ( i ) ∏ j ≠ i i − j k − j = ∑ i f ( i ) ( m − i ) ! i ! ( − 1 ) m − i k m + 1 ‾ 1 k − i f(k)=\sum_if(i)\prod_{j\neq i}\frac{i-j}{k-j}=\sum_if(i)(m-i)!i!(-1)^{m-i}k^{\underline {m+1}}\frac{1}{k-i} f(k)=if(i)j=ikjij=if(i)(mi)!i!(1)mikm+1ki1 容易发现是一个卷积

不过我们要优雅地求和
考虑算 x 1 x^1 x1 的期望时的组合意义,即拆为 ∑ 1 \sum 1 1,这等价于我们再放一个求进去

∑ k = m 2 m ( n k + 1 ) ( k m ) ( m 2 m − k ) \sum_{k=m}^{2m}\binom{n}{k+1}\binom{k}{m}\binom{m}{2m-k} k=m2m(k+1n)(mk)(2mkm)
然后考虑多放 t t t 个带标号的球进去,容易发现其意义就是 ( ∑ 1 t ) t ! \binom{\sum 1}{t}t! (t1)t!
所以
∑ i i t ‾ [ ( n − i m ) 2 − ( n − i − 1 m ) 2 ] = ∑ k = m 2 m t ! ( n k + t ) ( k m ) ( m 2 m − k ) \sum_i i^{\underline t}\Big[\binom{n-i}{m}^2-\binom{n-i-1}{m}^2\Big]\\=\sum_{k=m}^{2m}t!\binom{n}{k+t}\binom{k}{m}\binom{m}{2m-k} iit[(mni)2(mni1)2]=k=m2mt!(k+tn)(mk)(2mkm)
我们先转下降幂
∑ t c t t ! ∑ k = m 2 m ( n k + t ) ( k m ) ( m 2 m − k ) \sum_{t}c_tt!\sum_{k=m}^{2m}\binom{n}{k+t}\binom{k}{m}\binom{m}{2m-k} tctt!k=m2m(k+tn)(mk)(2mkm)
容易发现是一个卷积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值