L'hospital Rule

L ′ h o s p i t a l   R u l e : L'hospital\ Rule: Lhospital Rule:

  • x → a , x → ∞ x\to a,x\to \infty xa,x 时两个函数 f ( x ) , F ( x ) f(x),F(x) f(x),F(x) 都趋近于 0 0 0 或无穷大,那么极限 lim ⁡ x → a f ( x ) F ( x ) \lim_{x\to a}\frac{f(x)}{F(x)} limxaF(x)f(x) 可能存在也可能不存在,把这种极限叫做未定式,记做 0 0 , ∞ ∞ \frac{0}{0},\frac{\infty}{\infty} 00,,以下讨论 0 0 \frac{0}{0} 00 的情况
  • 引理:罗尔定理,柯西中值定理:
    罗尔定理:若 f ( x ) f(x) f(x)满足在 [ a , b ] [a,b] [a,b] 连续,在 ( a , b ) (a,b) (a,b) 可导, f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),那么 ( a , b ) (a,b) (a,b) 中存在 ξ \xi ξ 使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0 证明略
    柯西中值定理
    参数方程
    x = f ( t ) y = g ( t ) ( a ≤ t ≤ b ) x=f(t)\\y=g(t)(a\le t\le b) x=f(t)y=g(t)(atb)
    存在 ξ \xi ξ 使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)
    证:
    要证 存在 ξ \xi ξ 使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)
    ⇔ \Leftrightarrow f ( b ) − f ( a ) g ( b ) − g ( a ) g ′ ( ξ ) = f ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}g'(\xi)=f(\xi) g(b)g(a)f(b)f(a)g(ξ)=f(ξ)
    f ′ ( ξ ) − f ( b ) − f ( a ) g ( b ) − g ( a ) g ′ ( ξ ) = 0 f'(\xi)-\frac{f(b)-f(a)}{g(b)-g(a)}g'(\xi)=0 f(ξ)g(b)g(a)f(b)f(a)g(ξ)=0
    那么我们令 φ ( x ) = f ( x ) − f ( b ) − f ( a ) g ( b ) − g ( a ) g ( x ) = 0 \varphi(x)=f(x)-\frac{f(b)-f(a)}{g(b)-g(a)}g(x)=0 φ(x)=f(x)g(b)g(a)f(b)f(a)g(x)=0
    那么即证 ∃ ξ , s . t . φ ′ ( ξ ) = 0 \exists \xi,s.t.\varphi'(\xi)=0 ξ,s.t.φ(ξ)=0,我们只需要验证 φ ( a ) \varphi(a) φ(a) 是否等于 φ ( b ) \varphi(b) φ(b)
    经检验相等,那么就可以用罗尔定理来证明
  • 洛必达法则:设当 x → a x\to a xa 时, f ( x ) , F ( x ) → 0 f(x),F(x)\to 0 f(x),F(x)0,在 a a a 的某个取心邻域内, f ′ ( x ) , F ′ ( x ) ≠ 0 f'(x),F'(x)\ne 0 f(x),F(x)=0 存在, lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim_{x\to a}\frac{f'(x)}{F'(x)} limxaF(x)f(x) 存在,则
    lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim_{x\to a}\frac{f(x)}{F(x)}=\lim_{x\to a}\frac{f'(x)}{F'(x)} xalimF(x)f(x)=xalimF(x)f(x)
    证:我们可以假定 f ( a ) = F ( a ) = 0 f(a)=F(a)=0 f(a)=F(a)=0,设 x x x 为这个邻域内的一点,那么有 “柯西中值定理 ”
    f ( x ) F ( x ) = f ( x ) − f ( a ) F ( x ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) ( ξ 在 x 与 a 之间 ) \frac{f(x)}{F(x)}=\frac{f(x)-f(a)}{F(x)-F(a)}=\frac{f'(\xi)}{F'(\xi)}(\xi\text{在$x$与$a$之间}) F(x)f(x)=F(x)F(a)f(x)f(a)=F(ξ)f(ξ)(ξxa之间)
    x → a x\to a xa 时, ξ → a \xi\to a ξa 那么得证

然后我们就可以切掉 【模板】多项式快速插值
F ( x ) = ∑ i = 1 n y ( i ) ∏ j ≠ i x − x j x i − x j F(x)=\sum_{i=1}^ny(i)\prod_{j\neq i}\frac{x-x_j}{x_i-x_j} F(x)=i=1ny(i)j=ixixjxxj
先考虑对每一个 i i i 求出 ∏ j ≠ i ( x i − x j ) \prod_{j\neq i} (x_i-x_j) j=i(xixj),我们令 g ( x ) = ∏ ( x − x i ) g(x)=\prod (x-x_i) g(x)=(xxi),那么
∏ j ≠ i ( x i − x j ) = lim ⁡ x → x i g ( x ) x − x i = lim ⁡ x → x i g ′ ( x ) = g ′ ( x i ) \prod_{j\neq i} (x_i-x_j)=\lim_{x\to x_i}\frac{g(x)}{x-x_i}=\lim_{x\to x_i}g'(x)=g'(x_i) j=i(xixj)=xxilimxxig(x)=xxilimg(x)=g(xi)
那么每一个的值可以分治 n t t ntt ntt + 多点求值做出来,然后我们分治求
F l , r ( x ) = ∑ i = l r y ( i ) g ′ ( x i ) ∏ j ≠ i , j ∈ [ l , r ] x − x j = F l , m i d ( x ) ∗ ∏ j ∈ [ m i d + 1 , r ] , j ≠ i x − x j + F m i d + 1 , r ( x ) ∗ ∏ j ∈ [ l , m i d ] , j ≠ i x − x j F_{l,r}(x)=\sum_{i=l}^r\frac{y(i)}{g'(x_i)}\prod_{j\neq i,j\in[l,r]}x-x_j\\=F_{l,mid}(x)*\prod_{j\in[mid+1,r],j\neq i}x-x_j+F_{mid+1,r}(x)*\prod_{j\in[l,mid],j\neq i}x-x_j Fl,r(x)=i=lrg(xi)y(i)j=i,j[l,r]xxj=Fl,mid(x)j[mid+1,r],j=ixxj+Fmid+1,r(x)j[l,mid],j=ixxj

均可在 n l o g 2 n nlog^2n nlog2n 的时间内解决

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值