线性筛

一种O(n)求质数的算法

这个算法的精髓是

每个 合数 只会被自己的 最小质因子 筛 一次

看看代码理解

void pre(int n){
	for(int i=2;i<=n;i++){
		if(isp[i]==0){//是质数
			prim[++cnt]=i;//质数 
			p[i]=i;	//最大质因子,质数的最大质因子是它本身
		}
		for(int j=1;j<=cnt&&prim[j]*i<=n;j++){//把所有刚刚的质数枚举一遍
			isp[prim[j] * i]=1;//不是质数
			p[prim[j] * i]=p[i];//最大质因子,每个数是由最大因子筛选出 
			/*一个数的最大质因子是它的最大因子的最大质因子
			这个break保证了合数只被最小质约数访问到。 
                        比如40=2*20=4*10=5*8,只有i=20时,才会在prim[j]=2的时候被访问到。 
                        当i=10时,在prim[j]=2时就已经被break了;同样的,i=8时,在prim[j]也已经break
			*/ 
			if(i%prim[j]==0)break;
		}
	}
}

如何理解 if(i%prim[j]==0) break;

一个数i,假设它整除prim1,即i%prim1==0

如果没有break,到下一个prim2时

prim2*i=prim1*(i/prim1*prim2) ,因为i整除prim1,且prim1<prim2

所有prim2必定不是prim2*i的最小质因子

因为每个数只会筛一次,所有复杂度O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值