中国剩余定理

求解方程组

其中m互质  , 我们设 M=\prod mi  ,Mi = M/mi

则通解为 x=\sum ai*Mi*Mi^-^1+t*M   t为任意整数

因为Mi与mi互质  所以令Mi^-1 为Mi 模mi的逆元

我们发现对于任意ai * Mi * Mi^-1 它模mi 为 ai 因为 Mi * Mi^-1 =1


https://www.luogu.org/problemnew/show/P3868

#include<bits/stdc++.h>
#define N 15
#define LL long long
using namespace std;
int k; LL A[N],B[N],M=1,ans,x,y;
LL mul(LL a,LL b,LL p){
	LL ans=0;
	for(;b;b>>=1){
		if(b&1) ans = (ans+a) % p;
		a = (a+a) % p;
	}return ans;
}
void exgcd(LL a,LL b){
	if(!b){x=1,y=0; return;}
	exgcd(b,a%b); LL x1=y,y1=x-a/b*y; x=x1,y=y1;
}
int main(){
	scanf("%d",&k);
	for(int i=1;i<=k;i++) scanf("%lld",&A[i]);
	for(int i=1;i<=k;i++) scanf("%lld",&B[i]), M *= B[i];
	for(int i=1;i<=k;i++) A[i] = (A[i] % B[i] + B[i]) % B[i];
	for(int i=1;i<=k;i++){
		int Mi=M/B[i];
		exgcd(Mi,B[i]); x=(x+B[i])%B[i];
		ans = (ans+mul(mul(x,Mi,M),A[i],M))%M;
	}printf("%lld",(ans+M)%M); return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值