【大模型学习】第十三章 混合检索(Hybrid Retrieval)综述

目录

引言

一、概念与背景

混合检索定义

应用场景

二、工作原理

核心思想

组合策略

三、架构设计要点

四、实现示例

五、结论


引言

        随着自然语言处理(NLP)领域的快速发展,单一的检索方法已经难以满足日益复杂的查询需求。混合检索(Hybrid Retrieval)作为一种解决方案,结合了传统基于关键词的检索方法和现代基于深度学习的语义理解模型的优势,旨在提高信息检索的准确性和效率。

本技术文档将详细介绍混合检索的概念、工作原理、架构设计要点以及实现示例。

一、概念与背景

混合检索定义

混合检索指的是在执行信息检索任务时,综合利用多种检索策略和技术,包括但不限于传统的TF-IDF、BM25等基于关键词的方法,以及BERT、Sentence-BERT等基于深度学习的语义相似度模型࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

好多渔鱼好多

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值