本文聊聊 LLama-Factory,它是一个开源框架,这里头可以找到一系列预制的组件和模板,让你不用从零开始,就能训练出自己的语言模型(微调)。
不管是聊天机器人,还是文章生成器,甚至是问答系统,都能搞定。而且,LLama-Factory 还支持多种框架和数据集,这意味着你可以根据项目需求灵活选择,把精力集中在真正重要的事情上——创造价值。
使用LLama-Factory,常见的就是训练LoRA模型,增强模型在某方面的生成能力。本教程将以增强 GLM-4-9B-Chat 模型的脑筋急转弯能力为例,演示LoRA模型的微调方法。
一、环境准备
1、本地使用
LLama-Factory 的安装比较简单,大家直接看官网页面就够了:
https://github.com/hiyouga/LLaMA-Factory
有需要LLama-Factory安装包,可以微信扫描下方CSDN官方认证二维码
,免费领取!
2、云镜像
如果你本地没有一张好显卡,也不想费劲的安装,就想马上开始训练。
可以试试我的云镜像,开箱即用:https://www.haoee.com/applicationMarket/applicationDetails?appId=40&IC=XLZLpI7Q
平台注册就送一定额度,可以完成本教程的的演示示例。
镜像已经内置了几个基础模型,大都在6B-9B,单卡24G显存即可完成LoRA微调。
如果要微调更大的模型,则需要更多的显卡和显存,请在购买GPU时选择合适的显卡和数量。
已经内置的模型:Yi-1.5-9B-Chat、Qwen2-7B、meta-llama-3.1-8b-instruct、glm-4-9b-chat、chatglm3-6b
如果缺少你需要的模型,可以给我反馈。
假设你已经解决了程序运行环境问题,下边将开始讲解 LLama-Factory 的使用方法。
LLama-Factory 支持命令行和Web页面训练两种方式,为了方便入门,这篇文章以Web页面训练为例。
二、选择基础模型
语言:zh,因为我们要微调的是中文模型。
模型选择:GLM-4-9B-Chat
模型路径:/root/LLaMA-Factory/models/glm-4-9b-chat,默认会自动下载模型,不过速度可能比较慢,我们的镜像中已经下载好这个模型,所以直接填写路径更快。
微调方法:lora
三、准备训练数据集
LLaMA-Factory自带了一些常用的数据集,如果你使用的数据集不在里边,可以修改 data/dataset_info.json,在其中增加自己的数据集。
这里我使用的是一个弱智吧问答数据集,数据集的格式是 alpaca,来源:https://huggingface.co/datasets/LooksJuicy/ruozhiba
大家准备自己的数据的时候,也一定要按照指定的格式来。
四、训练参数设置
训练参数需要根据实际训练效果进行调整,这里给出一个参考设置。
数据集:请根据你的需要选择,这里选择我上边定义的 ruozhiba_qa。
学习率:1e-4,设置的大点,有利于模型拟合。
计算类型:如果显卡较旧,建议计算类型选择fp16;如果显卡比较新,建议选择bf16。
梯度累计:2,有利于模型拟合。
LoRA+学习率比例:16,相比LoRA,LoRA+续写效果更好。
LoRA作用模块:all,表示将LoRA层挂载到模型的所有线性层上,提高拟合效果。
五、开始训练
点击“开始”按钮,可以在页面上看到训练进度和训练效果。
根据训练方法和训练数据的大小,训练需要的时间不定。
六、推理测试
在“检查点路径”这里加载刚刚训练的LoRA模型,然后切换到“Chat”页签,点击“加载模型”。
测试完毕后,记得点击“卸载模型”,因为模型占用显存比较大,不释放的话,再进行别的任务可能会出错。
对比训练前后的变化:
训练前:
训练后:
这是一个比较感性的测试,如果需要更为正式的效果评估,请使用“Evaluate & Predict” 选择合适的评测数据集进行评估。
七、合并导出模型
有时候我们需要把模型导出来放在别的地方使用,输出一个完整的模型文件,而不是基础模型+LoRA模型。
检查点路径:训练出来的LoRA模型
导出目录:设置一个服务器上的路径,新的模型会存放到这里。
最后点击“开始导出”就行了。导出完毕后,请前往服务器相关的路径中下载模型。
八、LLaMA-Factory 架构
最后送大家一张 LLaMA-Factory 的架构图,方便理解其原理。
图片左侧:显示了 LLaMA-Factory 的架构,分为四个主要部分:LlamaBoard、Trainer、Model Loader 和 Data Worker。
-
LlamaBoard:用于参数配置和训练状态监视。
-
Trainer:负责优化和训练方法的选择,如 LoRA+、GaLoRe、Pre-train、SFT 等。
-
Model Loader:负责模型初始化、补丁、量化和适配器等功能。
-
Data Worker:负责加载、对齐、预处理和合并训练数据。
图片右侧:列出了支持的流行语言模型和大小,以及支持的训练方法。
-
支持的语言模型和大小:LLaMA、LLaMA-2、LLaMA-3、Command-R、Mistral/Mixtral、OLMo、Phi-1.5/2、Qwen、DeepSeek (MoE)、Falcon、Gemma/CodeGemma 和 StarCoder2。
-
支持的训练方法:全量调整、冻结调整、LoRA、QLoRA、奖励建模、PPO 训练、DPO 训练、ORPO 训练。
总体上来说,LLama-Factory 的使用还是挺顺利的,没有太多的坑。
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
5. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】