Agentic RAG:超越传统RAG与案例分享

在人工智能快速发展的今天,检索增强生成(Retrieval-Augmented Generation,简称 RAG)技术已经成为大语言模型(LLM)应用的关键突破。RAG 框架不断推陈出新、日新月异,从 Navie RAG、高级 RAG、模块化 RAG,发展到现在的 Graph based RAG,甚至混合高级 RAG 与 GraphRAG 的 HybridRAG。那么,如何在日新月异的 RAG 技术下,开发一种能够不断适应的框架呢?今天,我们将深入探讨 Agentic RAG,这一革命性的方法正在重新定义智能信息检索与生成的边界。

一、Agentic RAG:智能决策的新范式

传统 RAG 系统的工作方式相对简单:接收用户查询 → 检索相关文档 → 基于文档生成答案。但在实际应用中,这种线性模式通常显得过于刻板和局限。现实世界的问题往往错综复杂,需要更加智能和灵活的方案。

Agentic RAG 引入了一个关键概念:让 Agent 在整个信息检索和生成过程中主动思考和决策。这不仅仅是一个技术术语,而是一种全新的智能工作范式。

1. 查询分析:智能重构

在 Agentic RAG 中,原始用户查询不再被直接照搬,而是经过精细的分析和重构:

  • 查询重写:将模糊或复杂的查询转化为更加精确、可检索的形式

  • 智能路由:判断是否需要额外的数据源来全面回答问题

想象一下,用户询问"最近的天气对公司销售有什么影响"。传统 RAG 可能会束手无策,而 Agentic RAG 会:

  1. 识别需要整合销售数据和天气信息

  2. 智能地从不同数据源检索相关信息

  3. 综合分析并生成有洞察力的答案

2. 多源数据检索:打破信息孤岛

Agentic RAG 的一大优势在于其灵活的数据检索能力:

  • 实时用户数据:根据用户当前上下文动态调整

  • 内部文档:精准匹配组织内部知识

  • 外部数据源:从互联网实时获取最新信息

举个例子,对于一个客户支持场景,系统可以:

  • 查看用户历史工单

  • 检索产品使用手册

  • 获取最新的技术更新信息

  • 综合生成最精准的解决方案

3. 动态答案生成与优化

Agentic RAG 不满足于仅仅给出一个答案,而是通过多轮迭代不断优化:

  • 生成多个候选答案

  • 评估每个答案的准确性和相关性

  • 必要时重新查询或调整生成策略

4. 从失败中学习:自我修正机制

传统系统遇到无法回答的问题往往会直接告诉用户"无法解决"。而 Agentic RAG 则会:

  • 识别信息鸿沟

  • 主动寻找补充信息源

  • 尝试重新生成更优答案

二、Agentic RAG 资源推荐

1. Nvidia Agentic RAG

Nvidia 展示的 Agentic RAG 只是一个示例,参考了如下 3 篇论文实现。

  • 路由 (Adaptive-RAG[1]). 根据问题路由到不同的检索器

  • 回退 (Corrective RAG[2]). 如果文档与查询不相关,则回退到网络搜索

  • 自纠错 (Self-RAG[3]). 当答案具有幻觉或者未能回答问题时候,自动尝试修正答案。

它基本实现了如下图所示的框架,它使用打分机制评判答案是否包含幻觉,是否需要加入新的信息。具体地址可以参考:https://github.com/NVIDIA/workbench-example-agentic-rag/blob/main/code/langgraph_rag_agent_llama3_nvidia_nim.ipynb,整个代码基于Langchain开发,使用流程编排完成,包含大量的Prompt设计。

这个项目还包含ChatUI,可以显示具体的运行流程,如下图所示。

在这里插入图片描述

2. LlamaIndex Agentic RAG

DeepLearning.ai 的课程Agentic RAG[4],由 LlamaIndex 的创始人 Jerry Liu 讲授,描述了一种使用 LlamaIndex 如何构建 Agentic RAG 的流程。它将文档包含检索等流程包装成为一个 Tool,然后包装到 Agent 中,供路由选择调用。而在路由前,它会尝试分解或重写用户查询,然后交给 Router,大概设计流程如下。

比如你可能会问:“比较一下 adapt rag 和 self-rag,首先分析各个论文中的方法”,查询重写模块可能会将用户提问分解为:

  • adapt rag 中的方法

  • self rag 中的方法

  • 对比 self rag 和 adapt rag

然后 Router 会分别调用 self rag 的 summary tool 和 adapt rag 的 summary tool,然后由 LLM 进行总结输出。

结语

Agentic RAG 不仅仅是一种技术,更是一种思维方式。它代表了从被动检索到主动学习、从静态匹配到动态智能的巨大飞跃。

三、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

Agentic RAG 是一种先进的信息检索和生成框架,它结合了代理(Agent)、检索增强生成(Retrieval-Augmented Generation, RAG)以及大型语言模型(LLM)的能力。这种架构旨在更有效地处理复杂的查询请求,并提供更加准确的答案。 核心特点包括: - 动态编排机制:利用AI代理的灵活性来适应不同类型的用户需求,调整检索生成策略以解决复杂的问题。 - 查询优化:当初始检索结果不理想时,系统会尝试改进查询条件或者采用其他手段提高结果质量。 - 工具调用:可以集成外部工具和服务,例如特定领域的API或数据库访问权限,从而扩展系统的功能范围。 - 多步推理能力:支持需要连续逻辑步骤才能完成的任务解答过程。 - 应用于各个领域:可以根据具体的应用场景创建专业的文档代理(Doc Agent),如财务、法律等领域,帮助收集相关信息并形成综合性的报告文本。 为了使 Agentic RAG 更加实用,在实际应用中通常还会涉及到以下几个方面的工作: 1. 定义明确的目标群体及其常见问题类型; 2. 设计合理的数据源接入方案确保获取高质量的信息资源; 3. 开发高效的算法实现快速而精确的结果匹配; 4. 测试和完善整个流程保证稳定可靠的用户体验。 通过这种方式,Agentic RAG 能够显著提升自动化问答服务的质量,特别是在面对那些涉及广泛背景知识和技术细节的情况下表现尤为突出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值