Dify平台:从架构到部署指南

一、Dify介绍

生成式 AI 应用创新引擎,开源的 LLM 应用开发平台。提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等能力,轻松构建和运营生成式 AI 原生应用,比 LangChain 更易用。

一个平台,接入全球大型语言模型。不同应用场景,自由体验、无缝切换,实现业务层和模型层解耦。

1.1 Dify AI架构

(1)整体架构设计

该架构采用分层设计,自上而下可分为四层:

  • 数据层:
    包含Dataset(数据集)和Prompts(提示词)两个输入源,通过ETL进行数据处理,并由RAG Pipeline实现知识检索增强。

  • 开发层:
    提供Prompts IDE和Agent DSL两大开发工具,前者用于提示词的编写和管理,后者用于构建智能代理。

  • 编排层:
    以Orchestration Studio为核心,负责协调各个组件的运行,并通过Moderation System(审核系统)和Cache System(缓存系统)保障应用质量。

  • 基础层:
    包括Storage(存储系统)和LLMs(语言模型)两大基础设施,为上层提供支撑。

(2)核心组件功能

  • Dataset ETL
    负责数据的提取(Extract)、转换(Transform)和加载(Load),确保数据质量。

  • Dify RAG Pipeline
    实现检索增强生成,提高模型回答的准确性和可靠性。

  • Dify Prompts IDE
    提供提示词的编写、测试和版本管理功能。

  • Dify Agent DSL
    支持智能代理的开发,实现感知、规划和行动等能力。

  • Plugins Toolbox
    提供丰富的插件工具箱,支持工作流程、社区集成等功能。

  • Dify LLMOps
    提供模型运维能力,包括监控、注释和生命周期管理。

1.2 开箱即用,为快速增长而设计

Dify 为开发者提供了健全的应用模版和编排框架,你可以基于它们快速构建大型语言模型驱动的生成式 AI 应用,将创意变为现实,也可以随时按需无缝扩展,驱动业务增长。

(1)特定领域的聊天机器人和 AI 助理

通过可视化的提示词编排和数据集嵌入,零代码即可快速构建对话机器人或 AI 助理,并可持续优化对话策略,革新人机交互体验。

(2)不限的长度创意文档生成

既可以基于知识库和风格要求,自动组织语言,生成逻辑清晰、结构完整的工作文档。 也可以自动解析工作文档,对无限长度的文档进行提取、总结和重构。

(3)插件市场

v1.0.0版本中,更新了插件市场。虽然 Dify 平台已内置多个由官方维护与社区贡献着开发的工具,但在此模式下,现有的工具难以全面覆盖各类细分场景的需求,而新工具从开发到嵌入 Dify 平台又需要较长周期。因此,官方决定开放生态,让每位开发者都能够轻松地打造属于自己的工具,使用第三方模型与工具帮助开发者显著提升应用能力。

二、部署

我自己部署的话是利用window桌面的docker容器化。

1. git下载Dify源代码

git上的clone稳定的版本。

git clone -b 0.15.1 https://github.com/langgenius/dify.git   

2. 启动Dify

cd dify/docker
docker compose up -d

3. 访问Dify

访问 Dify在浏览器中输入 http://localhost
访问 Dify。


三、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

### ComfyUI Dify 部署指南与解决方案 对于希望部署 ComfyUI Dify 的开发者而言,理解其架构和依赖关系至关重要。通常情况下,Dify 是一种用于增强用户界面交互性的框架或库,在特定场景下可能指代不同的技术栈。 为了成功部署 ComfyUI Dify,建议遵循以下指导原则: #### 准备工作环境 确保本地开发环境中安装了必要的软件包和支持工具,包括但不限于 Python 版本管理器 pyenv 和虚拟环境 venv 或 conda[^1]。 ```bash # 安装Python版本管理器pyenv curl https://pyenv.run | bash ``` #### 获取项目源码 从官方仓库克隆最新的稳定版代码至本地机器上,并切换到目标分支。 ```bash git clone https://github.com/user/repo.git comfyui-dify cd comfyui-dify ``` #### 设置配置文件 创建并编辑 `.env` 文件来定义运行时所需的各项参数设置,如数据库连接字符串、API密钥等敏感信息应妥善保管,不提交至公共代码库中。 #### 构建与启动服务 利用 Docker 或者直接通过 pip 工具链完成依赖项的安装以及应用本身的构建过程;随后按照文档指示执行相应的命令以启动 Web 服务器实例。 ```dockerfile FROM python:3.9-slim-buster WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "80"] ``` #### 测试验证功能 最后一步是对新上线的服务进行全面的功能测试,确认各个模块均能正常运作无误后方可正式投入使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值