AI Agents从入门到精通:Hugging Face 官方课程精华解读

Thumbnail

引言

AI Agents 是近年来人工智能领域的一个重要研究方向,它们通过结合大型语言模型(LLMs)和外部工具,能够执行复杂的任务并与环境进行交互。Hugging Face 的 AI Agents Course 为学习者提供了一个全面的入门指南,帮助理解 AI Agents 的基本概念、工作原理以及如何构建自己的 AI Agent,咱们这篇文章会深入解读这门课程的核心内容,帮助读者更好地掌握 AI Agents 的基础知识。

课程大纲概览

课程 Unit 1 内容涵盖了 AI Agents 的基础知识,包括以下几个方面:

1. AI Agents 的定义与核心概念
2. 大型语言模型(LLMs)的作用
3. 工具(Tools)与动作(Actions)
4. Agent 的工作流程:思考(Thought)→ 行动(Action)→ 观察(Observation)
5. 使用 smolagents 构建第一个 AI Agent
6. 发布 Agent 到 Hugging Face Spaces

接下来,我们将逐一解读这些内容。

一、AI Agents 的定义与核心概念

什么是 AI Agent?

AI Agent 是一个能够通过 AI 模型(通常是 LLM)进行推理、规划并与环境交互的系统。它的核心功能包括:

  • 理解自然语言:能够解析用户的指令并生成有意义的响应。
  • 推理与规划:分析信息、制定策略并决定下一步行动。
  • 与环境交互:通过工具执行动作,并根据环境反馈调整行为。

课程通过一个生动的类比—— Alfred 咖啡助手,帮助理解 Agent 的工作流程。Alfred 能够接收用户的指令(如“请给我一杯咖啡”),通过推理和规划,调用工具(如咖啡机)完成任务,并将结果反馈给用户。

Agent 的核心组成部分

  • 大脑(AI 模型):负责推理和规划,决定下一步行动。
  • 身体(工具与能力):Agent 能够执行的具体动作,依赖于其配备的工具。

二、大型语言模型(LLMs)的作用

什么是 LLM?

LLM 是一种基于 Transformer 架构的深度学习模型,擅长理解和生成自然语言。它们通过大量的文本数据进行训练,能够捕捉语言的模式、结构和细微差别。常见的 LLM 包括 DeepSeek、GPT、Claude、Llama、Gemini 等等。

LLM 的核心机制

  • 自回归生成:LLM 通过预测下一个 token 来生成文本,直到生成结束符(EOS)。
  • 注意力机制:Transformer 架构中的注意力机制帮助模型在生成文本时关注最重要的部分。
  • 提示工程:通过精心设计的提示(Prompt),可以引导 LLM 生成符合预期的输出。

LLM 在 AI Agent 中的作用

LLM 是 AI Agent 的“大脑”,负责理解用户指令、生成响应并决定如何调用工具。课程通过多个示例展示了 LLM 如何与工具结合,完成复杂的任务。

三、工具(Tools)与动作(Actions)

什么是工具?

工具是 Agent 能够调用的外部函数或 API,用于执行特定的任务。常见的工具包括:

  • 网络搜索:获取实时信息。
  • 图像生成:根据文本描述生成图像。
  • API 接口:与外部服务(如 GitHub、YouTube)交互。

工具的设计与集成

  • 工具的描述:每个工具都需要一个清晰的文本描述,说明其功能、输入参数和输出类型。
  • 工具的调用:LLM 生成调用工具的代码或 JSON 格式的指令,Agent 负责解析并执行。

课程通过一个简单的计算器工具示例,展示了如何定义和集成工具。

四、Agent 的工作流程:思考 → 行动 → 观察

思考(Thought)

思考是 Agent 的推理过程,它通过 LLM 分析当前任务并制定行动计划。课程介绍了 ReAct 方法,即通过提示“Let’s think step by step”引导 LLM 逐步分解任务。

行动(Action)

行动是 Agent 调用工具执行任务的过程。课程详细介绍了 JSON Agent 和 Code Agent 两种行动格式:

  • JSON Agent:生成 JSON 格式的指令,调用工具。
  • Code Agent:生成可执行的代码块,执行复杂的逻辑。

观察(Observation)

观察是 Agent 从环境中获取反馈的过程。通过观察,Agent 可以调整其策略并继续执行任务,直到任务完成。

五、使用 smolagents 构建第一个 AI Agent

什么是 smolagents?

smolagents 是一个轻量级的 Python 库,用于简化 AI Agent 的开发。它支持 Code Agent,即通过生成代码块来执行动作。

https://huggingface.co/blog/smolagents

构建 Agent 的步骤

1. 定义工具:使用 `@tool` 装饰器定义工具。

2. 创建 Agent:使用 `CodeAgent` 类创建 Agent,并指定 LLM 和工具列表。

3. 运行 Agent:通过 Gradio 界面与 Agent 交互。

课程提供了一个模板 Space,学习者可以在此基础上构建自己的 Agent,并添加自定义工具。

六、发布 Agent 到 Hugging Face Spaces

完成 Agent 的开发后,可以将其发布到 Hugging Face Spaces,与他人分享。课程详细介绍了如何通过复制模板 Space 并修改代码,快速部署自己的 Agent。

七、总结

Unit 1 的课程为学习者提供了 AI Agents 的全面入门指南,涵盖了从基础概念到实际开发的各个环节。通过这门课程,学习者可以掌握如何利用 LLM 和工具构建功能强大的 AI Agent,并将其部署到实际应用中。

如果你对 AI Agents 感兴趣,这门课程是一个绝佳的起点。接下来,你可以继续学习更高级的主题,如微调 Agent 以实现更复杂的功能。

八、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

参考资料

  • Hugging Face Agents 课程 Unit 1:https://hf.co/learn/agents-course/unit1/introduction
  • Hugging Face NLP 课程:https://huggingface.co/learn/nlp-course/chapter1/1
  • smolagents GitHub:https://github.com/huggingface/smolagents
### 人工智能体相关的软件、工具和平台 #### 企业级AI智能体开发平台 BetterYeah AI 是一种专注于企业需求的企业级AI智能体平台,其核心功能涵盖了从零代码搭建Agent到一站式模型集成等多个方面[^2]。该平台提供了知识库管理、数据库连接、可视化工作流设计以及多模态聊天机器人支持等功能,极大地降低了企业和开发者构建复杂AI应用的技术门槛。 #### 开发者友好型工具 除了 BetterYeah AI 外,还有其他一些面向开发者的工具和框架可以用于创建和训练AI智能体。例如 Hugging Face 提供了一个强大的开源生态系统,允许用户访问预训练的语言模型并对其进行微调以适应特定应用场景的需求[^1]。此外,LangChain 和 LlamaIndex 这样的项目也提供了一系列组件来帮助实现更复杂的对话理解和上下文记忆机制。 #### 零代码/低代码解决方案 对于那些希望减少编程负担但仍需定制化服务的人来说,则可以选择像 Rasa 或 Microsoft Power Virtual Agents 这样强调易用性的选项。前者虽然需要一定水平的脚本编写技巧但同时也给予高度灵活性;后者则是完全基于图形界面操作从而让业务人员也能轻松上手配置自己的虚拟助手[^3]。 ```python from langchain import PromptTemplate, FewShotPromptTemplate examples = [ {"input": "What is the capital of France?", "output": "Paris"}, ] example_formatter_template = """Input: {input}\nOutput: {output}""" prompt_example = PromptTemplate( input_variables=["input", "output"], template=example_formatter_template, ) prefix = """Answer the following questions:\n""" suffix = """\nNow answer this question: What is the tallest mountain?""" few_shot_prompt = FewShotPromptTemplate( examples=examples, example_prompt=prompt_example, prefix=prefix, suffix=suffix, input_variables=["none"], example_separator="\n", ) print(few_shot_prompt.format()) ``` 上述代码片段展示了如何利用 LangChain 库中的 `FewShotPromptTemplate` 来构造提示模板,这对于增强智能体的理解能力和响应质量非常有帮助。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值