[C++]广度优先搜索(BFS)(附例题)

本文介绍了如何利用C++实现广度优先搜索(BFS)解决寻找与大牛的最小距离问题。通过一个ACM ICPC团队配置问题为例,详细讲解了BFS的基本思路、图的概念以及搜索流程,并给出了识别节点边和解题的思路。文章适合对图论和BFS感兴趣的读者。
摘要由CSDN通过智能技术生成

广度优先搜索(BFS)(附例题)

问题产生:

Isenbaev是国外的一个大牛。

现在有许多人要参加ACM ICPC。

一共有n个组,每组3个人。同组的3个人都是队友。

大家都想知道自己与大牛的最小距离是多少。

大牛与自己的最小距离当然是0。大牛的队友和大牛的最小距离是1。大牛的队友的队友和大牛的最小距离是2……以此类推。

如果实在和大牛没有关系的只好输出undefined了。

第一行读入n。表示有n个组。1 ≤ n ≤ 100

接下来n行,每行有3个名字,名字之间用空格隔开。每个名字的开头都是大写的。

每行输出一个名字,名字后面空格后输出数字a或者字符串undefined,a代表最小距离。

名字按字典序输出。

Sample Input
7
Isenbaev Oparin Toropov
Ayzenshteyn Oparin Samsonov
Ayzenshteyn Chevdar Samsonov
Fominykh Isenbaev Oparin
Dublennykh Fominykh Ivankov
Burmistrov Dublennykh Kurpilyanskiy
Cormen Leiserson Rivest
Sample Output
Ayzenshteyn 2
Burmistrov 3
Chevdar 3
Cormen undefined
Dublennykh 2
Fominykh 1
Isenbaev 0
Ivankov 2
Kurpilyanskiy 3
Leiserson undefined
Oparin 1
Rivest undefined
Samsonov 2
Toropov 1

问题分析

解决这个问题的方法就是使用广度优先搜索。所以我们先提出广度优先搜索的知识点分析。

广度优先搜索

知识点来自于:广度/宽度优先搜索(BFS)

1. 前言

广度优先搜索(也称宽度优先搜索,缩写BFS,以下采用广度来描述)是连通图的一种遍历策略。因为它的思想是从一个顶点V0开始,辐射状地优先遍历其周围较广的区域,故得名。

一般可以用它做什么呢?一个最直观经典的例子就是走迷宫,我们从起点开始,找出到终点的最短路程,很多最短路径算法就是基于广度优先的思想成立的。

算法导论里边会给出不少严格的证明,我想尽量写得通俗一点,因此采用一些直观的讲法来伪装成证明,关键的point能够帮你get到就好。

2.图的概念

刚刚说的广度优先搜索是连通图的一种遍历策略,那就有必要将图先简单解释一下。

如图2-1所示,这就是我们所说的连通图,这里展示的是一个无向图,连通即每2个点都有至少一条路径相连,例如V0到V4的路径就是V0->V1->V4。
一般我们把顶点用V缩写,把边用E缩写。

3. 基本思路

常常我们有这样一个问题,从一个起点开始要到一个终点,我们要找寻一条最短的路径,从图2-1举例,如果我们要求V0到V6的一条最短路(假设走一个节点按一步来算)【注意:此处你可以选择不看这段文字直接看图3-1】,我们明显看出这条路径就是V0->V2->V6,而不是V0->V3->V5->V6。先想想你自己刚刚是怎么找到这条路径的:首先看跟V0直接连接的节点V1、V2、V3,发现没有V6,进而再看刚刚V1、V2、V3的直接连接节点分别是:{V0、V4}、{V0、V1、V6}、{V0、V1、V5}(这里画删除线的意思是那些顶点在我们刚刚的搜索过程中已经找过了,我们不需要重新回头再看他们了)。这时候我们从V2的连通节点集中找到了V6,那说明我们找到了这条V0到V6的最短路径:V0->V2->V6,虽然你再进一步搜索V5的连接节点集合后会找到另一条路径V0->V3->V5->V6,但显然他不是最短路径。

你会看到这里有点像辐射形状的搜索方式,从一个节点,向其旁边节点传递病毒,就这样一层一层的传递辐射下去,知道目标节点被辐射中了,此时就已经找到了从起点到终点的路径。

我们采用示例图来说明这个过程,在搜索的过程中,初始所有节点是白色(代表了所有点都还没开始搜索),把起点V0标志成灰色(表示即将辐射V0),下一步搜索的时候,我们把所有的灰色节点访问一次,然后将其变成黑色(表示已经被辐射过了),进而再将他们所能到达的节点标志成灰色(因为那些节点是下一步搜索的目标点了)&

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值