spss26 效度和信度检验手把手教你操作

文章介绍了进行问卷数据分析的两个关键步骤:首先,通过Cronbachα系数评估问卷的信度,其值越接近1表示信度越高;其次,利用KMO和Bartlett的检验判断数据是否适合因子分析,KMO值大于0.6通常视为适合。这些方法旨在确保问卷调查结果的有效性和可靠性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
1 收集到问卷的第一步可能是要检验数据的可靠性以及和效度分析。
具体操作如下:
第一步导入数据:

  1. 文件-》导入数据-》选择对应的格式
    在这里插入图片描述
    注意,如果excel存在数据格式,可能会存在导入不了的情况
    在这里插入图片描述
    可通过变量视图去检查你的变量格式是否对,以及保留位数

第二步:可靠性分析得到Cronbach α系数

  1. 分析-刻度-可靠性分析

在这里插入图片描述

得到下面的结果:
在这里插入图片描述

Cronbach α系数是一种常用的衡量问卷信度的统计方法,通常用于评估一个问卷在测量同一概念时的内部一致性。它的取值范围在0到1之间,越接近1表示问卷的信度`在这里插入代码片`越高。Cronbach α系数的计算基于问卷各项的得分,可以通过计算各项得分之间的相关性来得到。如果各项得分间的相关性较高,则Cronbach α系数会比较高,说明问卷的信度较高;反之,则说明问卷的信度较低。

第三步 KMO和Bartlett的检验:
3 分析-降维-因子-描述-勾选KMO和Bartlett的检验
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

KMO和Bartlett的检验:
KMO和Bartlett的检验是一种常用的衡量数据适合因子分析的统计方法。该检验通过计算变量间的相关性和样本大小来评估数据是否适合因子分析。如果变量间的相关性较高,且样本大小较大,则数据适合因子分析。否则,数据可能不适合因子分析。

KMO值是Kaiser-Meyer-Olkin值的缩写,是一种常用于评估数据适合因子分析的统计方法。KMO值的取值范围在0到1之间,通常认为KMO值大于0.6或0.7表示数据适合因子分析,而KMO值小于0.5则表示数据不适合因子分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值