前向分步算法是一种计算方法,可以用于像提升方法这类由多个模型组合而成的模型的优化求解。
以AdaBoost为例是由多个弱分类器的线性组合而成的。前向分布算法可以是加法模型,也可以是其他模型。
AdaBoost算法的一种解释就是,即可以认为AdaBoost算法是模型为加法模型、损失函 数为指数函数、学习算法为前向分步算法时的二类分类学习方法。
下面以前向分步算法再来解释一遍AdaBoost算法:
考虑加法模型(additive model)

即
就是AdaBoost中的每一轮的分类器,
前向分步算法是优化加法模型的策略,常用于提升方法如AdaBoost。通过逐步添加弱分类器并调整权重,简化了复杂的优化问题。AdaBoost的每一轮都基于前向分步算法更新模型,逐步最小化损失函数,最终构建强分类器。
前向分步算法是一种计算方法,可以用于像提升方法这类由多个模型组合而成的模型的优化求解。
以AdaBoost为例是由多个弱分类器的线性组合而成的。前向分布算法可以是加法模型,也可以是其他模型。
AdaBoost算法的一种解释就是,即可以认为AdaBoost算法是模型为加法模型、损失函 数为指数函数、学习算法为前向分步算法时的二类分类学习方法。
下面以前向分步算法再来解释一遍AdaBoost算法:
考虑加法模型(additive model)

即
就是AdaBoost中的每一轮的分类器,
138
550
260
441

被折叠的 条评论
为什么被折叠?