更一般情况下观察曲线的形状

本文通过将可能参数设置为滑块并使用Geogebra动态观察曲线变化,揭示了构造类图形时参数设定与形状之间的规律。通过调整滑块观察参数对曲线的影响,实现了动态曲线的可视化展示,并探讨了在不同情况下参数的调整方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

虽然通过符号计算得到了某些特定参数设定下"五角星"形状曲线的参数方程,而且观察了不同参数对其形状的影响,但是,如何发现这些"形状"参数在构造类似的circle rolling on circle的动态曲线时的具体设定和形状之间的规律,就成为一个还不直观的反问题.


于是

(1)把可能的参数都变成slider放在Geogebra中,如图所示;

(2)符号的方式得到最终可能曲线的参数方程, 图中右下

调整slider,可以观察每个参数对曲线的影响,原来正六边形是要这样....

再回想一下五角星时候的参数设置:



实际上最终的结果在五角星的情况下还作了反射,只是为了让动态GIF绘制曲线的时候,显示曲线的笔顺跟我手画类似曲线时的笔顺保持一致,alpha也是从-72°开始的.


参数方程中的参数可以任意取, 同一条曲线的参数方程因而并不唯一.


不忘初心, 让它俩都动起来(如果参数有所不同也不要奇怪,因为都可以)



最后我要问点开这篇博客看的同学一个问题,提一个忠告:

   (1) 同学你听说过安利吗?大笑

   (2) Geogebra真是个好东西(免费开源). 还有Mathematica(个人版和教育版都便宜有折扣), 它们都是"初等数学和初级高等数学"学习的好伴侣.偷笑

### 如何在Matlab中绘制特定形状曲线 #### 使用基础绘图函数实现简单曲线绘制 对于想要在Matlab中绘制特定形状曲线,可以通过定义该曲线上的一系列点来完成这一目标。一旦有了这些坐标数据,就可以利用`plot()`函数来进行可视化[^1]。 下面是一个具体的例子,展示如何绘制一条正弦波形: ```matlab % 定义x轴范围 x = linspace(0, 2*pi, 100); % 计算对应的y值(这里以sin(x)为例) y = sin(x); % 绘制图形并设置标签 figure; plot(x, y); title('Sine Wave'); xlabel('Angle (radians)'); ylabel('Amplitude'); grid on; % 显示网格线以便清晰查看图像特征 ``` 这段代码首先创建了一个从\(0\)到\(2\pi\)均匀分布的向量作为横坐标的取值集合;接着计算每个角度对应于单位圆上纵坐标的位置即振幅;最后调用了`plot()`方法连结所有的点形成连续平滑的线条,并添加了必要的图表说明文字。 #### 应用高级工具箱构建复杂曲线 如果希望绘制加复杂的几何形态比如B样条曲线,则可能需要用到专门设计的相关库文件——例如MATLAB自带的支持包之一:“Curve Fitting Toolbox”。此扩展模块内含多种处理自由形式边界条件下的参数化路径的方法论和技术手段,其中就包含了能够高效生成此类特殊类型的多项式片段连接而成的整体表达式的算法实现方式[^3]。 考虑这样一个场景:现在要画出一段由给定控制顶点决定外形轮廓特性的三次B-spline曲线。此时可借助`splinetool`交互界面或者编程接口里的几个核心API如`bspline()`, `spmak()`等达成目的。 以下是采用后者编写的一个简短脚本实例: ```matlab % 控制多边形节点位置设定 cv = [0 .82;.41 .91;.73 .52;.65 .01;.28 -.30;-.41 .08]; % 构建b样条对象 fn = spmak(augknt([min(cv(:,1)) max(cv(:,1))], 4), cv'); % 展现最终效果 fnplt(fn); hold on; plot(cv(:,1), cv(:,2),'o'); legend('BSpline Curve','Control Points') axis([-1 1 -1 1]); axis equal tight; title('Cubic B-Spline Example with Control Polygon Shown') ``` 上述程序段里先指定了构成闭合环路所需经过的关键部位座标数组`cv`,再经由`splinemak()`构造器初始化一个四阶基底表示法的对象实体`fn`,进而凭借`fnplt()`渲染出完整的光滑过渡轨迹并与原始端点一同呈现在同一张图片之中供观察对比之用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值