# 最难初等平面几何题系列及其解法的一个介绍性材料

The objective of the Thomson problem is to determine the minimum electrostatic potential energy configuration of N electrons constrained to the surface of a unit sphere that repel each other with a force given by Coulomb's law. The physicist J. J. Thomson posed the problem in 1904[1] after proposing an atomic model, later called the plum pudding model, based on his knowledge of the existence of negatively charged electrons within neutrally-charged atoms.

Wolfram mathworld上面说法跟这个类似：

The Thomson problem is to determine the stable equilibrium positions of n classical electrons constrained to move on the surface of a sphere and repelling each other by an inverse square law. Exact solutions for n=2 to 8 are known, but n=9 and 11 are still unknown.

# The 80-80-20 Triangle

Several triangles due to their specific properties served as a source for research, wonderment, and a variety of problems. Some, like equilateral, right isosceles, golden, Egyptian, 30-60-90, are very well known. One triangle that deserves more recognition has probably entered mathematical folklore some 100 years ago. Tom Rike of Berkley Mathematical Circles mentions its appearance in the Mathematical Gazette, Volume 11 (1922), p. 173. (His online article also provides additional references.) This is the 80-80-20 (or sometimes 20-80-80) triangle, i.e., the isosceles triangle with the apex angle of 20° and the base angles of 80°.

The original problem gave rise to a few modifications; and each of them has been solved in many, many ways. I'll be adding solutions and perhaps problems related to the original one. Any assistance is welcomed.

 Original problem 60-70 variant Short segments Long segments Isosceles partition Another partition 40-50 Variant 30-40 variant 20-30 variant 10-20 variant

#### Original problem

Let ABC be an isosceles triangle (AB = AC) with ∠BAC = 20°. Point D is on side AC such that ∠CBD = 50°. Point E is on side AB such that ∠BCE = 60°. Find the measure of ∠CED.

Solutions

#### 60-70 Variant

Let ABC be an isosceles triangle (AB = AC) with ∠BAC = 20°. Point D is on side AC such that ∠CBD = 60°. Point E is on side AB such that ∠BCE = 70°. Find the measure of ∠CED.

Solutions

#### Short segments equality

ABC is an isosceles triangle with vertex angle ∠BAC = 20° and AB = AC. Draw ∠BCD = 60°; D lying on AB. Draw an arc with B as center and radius equal to BC. Let this arc cut AC at point E and AB at the point F. Prove that CE = DF.

Solutions

#### Long segments equality

ABC is an isosceles triangle with vertex angle ∠BAC = 20° and AB = AC. Point E is on AB such that AE = BC. Find the measure of ∠AEC.

Solutions

#### Partition into adjacent isosceles triangles

The 80-80-20 triangle can be partitioned into isosceles triangle with bases on the legs of the given triangle. For what other apex angles A can isosceles triangle ABC be tessellated with isosceles triangles in a similar manner?

Solutions

#### Partition that starts with a base angle bisector

The 80-80-20 triangle can be partitioned in a curious way: let BD, with D on AC, bisect angle B. Then AD = BC + BD.

Solutions

#### 40-50 Variant

Let ABC be an isosceles triangle (AB = AC) with ∠BAC = 20°. Point D is on side AC such that ∠CBD = 40°. Point E is on side AB such that ∠BCE = 50°. Find the measure of ∠CED.

Solutions

#### 30-40 Variant

Let ABC be an isosceles triangle (AB = AC) with ∠BAC = 20°. Point D is on side AC such that ∠CBD = 30°. Point E is on side AB such that ∠BCE = 40°. Find the measure of ∠CED.

Solutions

#### 20-30 Variant

Let ABC be an isosceles triangle (AB = AC) with ∠BAC = 20°. Point D is on side AC such that ∠CBD = 20°. Point E is on side AB such that ∠BCE = 30°. Find the measure of ∠CED.

Solution

#### 10-20 Variant

Let ABC be an isosceles triangle (AB = AC) with ∠BAC = 20°. Point D is on side AC such that ∠CBD = 10°. Point E is on side AB such that ∠BCE = 20°. Find the measure of ∠CED.

Solutions

### References

1. T. Rike, An Intriguing Geometry Problem, Berkeley Math Circle, May 5, 2002.
2. H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, MAA, 1967.
3. R. Honsberger, Four Minor Gems from Geometry, Mathematical Gems II, MAA, 1976.
4. R. Honsberger, Three Solutions to a Variation on an Old Chestnut, Mathematical Chestnuts from Around the World, MAA, 2001.
5. C. Knop, Nine Solutions to One Problem, Kvant, 1993, no 6.
6. R. Leikin, Dividable Triangles - What Are They?, Mathematics Teacher, May 2001, pp. 392-398.
7. V. V. Prasolov, Essays on Numbers and Figures, MAA, 2000.

#### 我debug过的最难的bug

2013-11-06 19:16:32

#### 一些平面几何证明题

2017-08-12 21:26:33

#### 奥赛初选用平面几何题

2016-03-20 20:38:27

#### 俯视两道中学平面几何题

2017-02-02 19:09:39

#### 一道初等平面几何竞赛题的暴力解法

2017-08-14 11:33:26

#### 拯救湖心的风筝（一道趣味平面几何问题）

2011-06-17 21:47:00

#### 又是那道平面几何奥数题

2014-06-16 15:28:38

#### 2015年国际奥数平面几何题欣赏

2015-07-24 10:53:41

#### 史上最难的初等几何问题？分享一个参考答案

2007-12-13 23:45:00

#### 初中经典几何题，95%的同学都不会做，高手请进来 2016-03-21 16:25 几何是初中数学最主要的内容，对大多数孩子来说也是比较难的内容。而我们想要战胜这一比较难的题型，我们就需要多多练题

2017-06-26 11:28:26