管理类联考——数学——趣味篇——公式——图形推导

🏠个人主页:fo安方的博客
💂个人简历:大家好,我是fo安方,考取过HCIE Cloud Computing、CCIE Security、CISP、RHCE、CCNP RS、PEST 3等证书。🐳
💕兴趣爱好:b站天天刷,题目常常看,运动偶尔做。🎐
💅欢迎大家:这里是CSDN,是我记录我的日常学习,偶尔生活的地方,喜欢的话请一键三连,有问题请评论区讨论。🌺
🥣专栏:目前专栏免费free,欢迎订阅管理类联考不迷路!这是专栏的导航页→入栏需看——全国硕士研究生入学统一考试管理类专业学位联考,阅读无烦恼。🌊
🪁 希望本文能够给读者带来一定的帮助~🌸文章粗浅,敬请批评指正!🐥

在这里插入图片描述

算术

中国剩余定理

在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?“翻译成现代文就是“有一个数除以3余2,除以5余3,除以7余2,问这个数是多少? "
这种余数问题是联考数学里比较不好想的问题。先从一个简单的问题入手。将这道题加以修改,“一个数除以3余1,除以5余3,除以7余5,问这个数最小是多少?“改后的题目与原题又有什么区别呢?
改后的题目,除数与余数的差都是相同的(3-1=2、5-3=2、7-5=2)。试想将这个数加2后,可以同时被3、5、7整除,也就是说这个数加2后是3、5、7的最小公倍数105,这个数就是103。
当除数与余数的差不相等时,这种方法就不太适用了。这时就可以用到中国剩余定理。
回到原题,“有一个数除以3余2,除以5余3,除以7余2,问这个数是多少?"解法主要分为3步:

  1. 找出三个数这三个数分别为
    3和5的公倍数中被7除余1的最小数,15
    5和7的公倍数中被3除余1的最小数,70
    3和7的公倍数中被5除余1的最小数,21
  2. 将15乘2 (2为所求数除以7的余数),70乘2 (2为所求数除以3的余数),21乘3 (3为所求数除以5的余数) 。将三个乘积相加,15x2+70x2+21x3=233。
  3. 算出3、5、7的最小公倍数105,用233除以105,得到的余数 23就是我们要求的最小数。

代数

整式及其运算

  1. 完全平方公式: ( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^2=a^2+2ab+b^2 (a+b)2=a2+2ab+b2
    在这里插入图片描述

先画出一个边长为 a + b a+b a+b的正方形,它的面积就是 ( a + b ) 2 (a+b)^2 (a+b)2。在相邻两边上分别取长度为a的一段,分别作对应边上的垂线。将正方形用两条垂直的直线进行如图切割,一个大正方形就被分成了四部分。
分别是一个边长为α的正方形、一个边长为b的正方形、两个长为b,宽为α的矩形.他们的面积分别为 a 2 、 b 2 、 a ⋅ b a^2、b^2、a·b a2b2ab
大正方形被拆分成了4部分,面积也就等于四部分的面积之和 = a 2 + b 2 + a b + a b =a^2+b^2+ab+ab =a2+b2+ab+ab,即 ( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^2=a^2+2ab+b^2 (a+b)2=a2+2ab+b2

  1. ( a − b ) 2 = a 2 − 2 a b + b 2 (a-b)^2=a^2-2ab+b^2 (ab)2=a22ab+b2

这个公式有两种记忆的方法
第一种方法:对比法
可以与 ( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^2=a^2+2ab+b^2 (a+b)2=a2+2ab+b2做一个对比,不同的部分在于一个是a+b,另一个是a一b。换一个角度想,我们可以把a-b想成a+(-b)。也就是 ( a − b ) 2 = [ a + ( − b ) ] 2 (a-b)^2=[a+(-b)]^2 (ab)2=[a+(b)]2。用一b替换原来公式中 b。即 ( a − b ) 2 = [ a + ( − b ) ] 2 = a 2 + 2 a ⋅ ( − b ) + ( − b ) 2 = a 2 − 2 a b + b 2 (a-b)^2=[a+(-b)]^2=a^2+2a·(-b)+(-b)^2=a^2-2ab+b^2 (ab)2=[a+(b)]2=a2+2a(b)+(b)2=a22ab+b2
第二种方法:几何法
在这里插入图片描述

仍然是先画出一个正方形ABCD,他的边长为α、从正方形一个顶点C,在大正方形内再做一个边长为 a − b ( b < a ) a-b(b<a) abba的小正方形CFMH(蓝色部分),小正方形 CFMH的面积即为所求。
延长小正方形的边长FM、HM交大正方形的边AB、AD于G、E点,将大正方形变成了三部分, C F M H 的面积 = 正方形 A B C D 的面积 − 其他部分面积 CFMH的面积=正方形ABCD的面积-其他部分面积 CFMH的面积=正方形ABCD的面积其他部分面积,其他部分被分成了两个长宽为a和b的矩形(矩形AGHD和矩形ABFE),但是两个长方形中有一个边长为b的正方形部分(正方形AGME)是重复的.所以
其他部分的面积 = 两个矩形的面积之和 2 a ⋅ b − 正方形 C F M H 的面积 b 2 = 2 a b − b 2 其他部分的面积=两个矩形的面积之和2a·b-正方形CFMH的面积b^2=2ab-b^2 其他部分的面积=两个矩形的面积之和2ab正方形CFMH的面积b2=2abb2也就是 蓝色正方形的面积 = 大正方形面积 − 其他部分面积 蓝色正方形的面积=大正方形面积-其他部分面积 蓝色正方形的面积=大正方形面积其他部分面积
( a − b ) 2 = a 2 − ( 2 a b − b 2 ) = a 2 − 2 a b + b 2 (a- b)^2= a^2-(2ab-b^2) = a^2- 2ab+ b^2 (ab)2=a2(2abb2)=a22ab+b2

  1. a 2 − b 2 = ( a + b ) ( a − b ) a^2-b^2=(a+b)(a-b) a2b2=(a+b)(ab)
    平方差公式是一个很简单的公式,也是一个很常用的公式,如何巧妙地记住它,下面给出两种方法。
    第一种方法是代数法,我们给等式的左边加上一个a·b,为了使原来式子的大小不变,还要再减去一个a·b,于是将 a 2 − b 2 a^2-b^2 a2b2整理成 a 2 − b 2 + a b − a b a^2-b^2+ab-ab a2b2+abab
    再分配一下得到 ( a 2 + a b ) − ( b 2 + a b ) = a − ( a + b ) − b − ( a + b ) = ( a + b ) ⋅ ( a − b ) (a^2+ ab)-(b^2+ab)= a -(a + b)- b-(a + b)=(a+ b)·(a- b) (a2+ab)(b2+ab)=a(a+b)b(a+b)=(a+b)(ab),即 a 2 − b 2 = ( a + b ) ⋅ ( a − b ) a^2-b^2= (a+b)·(a- b) a2b2=(a+b)(ab)
    第二种方法还是用几何法:
    先画出一个边长为α的正方形ABCD
    在这里插入图片描述
    以A为一个顶点,以AB、AD为临边做一个边长为b的小正方形AEMF。
    其中大正方形面积为 a 2 a^2 a2,小正方形面积为 b 2 b^2 b2,蓝色部分的面积即为所求 a 2 − b 2 a^2-b^2 a2b2
    在这里插入图片描述
    此时延长FM交BC于N,将矩形BNME经过平移,旋转至图中 CNB’E’位置蓝色部分就变成了一个新的矩形DFE’B’,其面积=(a+b)·(a- b).
    a 2 − b 2 = ( a + b ) ⋅ ( a − b ) a^2-b^2=(a+b)·(a-b) a2b2=(a+b)(ab)
    在这里插入图片描述

不等式

基本不等式:对于正数a,b,有 a + b 2 ≥ a b \frac{a+b}{2}≥\sqrt{ab} 2a+bab

基本不等式是解不等式相关题目中用到最多的一个公式,也是所有不等式定理中最基本的一个。我们可以通过一个圆去理解并轻松地记忆这个公式。
首先,确定一个以O为圆心,AB为直径,直径长为a+b的圆。其中AH长为a,BH长为b,做PH⊥AB于H点。
因为AB为直径,所以∠APB=90°,AP⊥BP,又PH⊥AB,所以形成了双垂直模型(如图中,蓝色部分)。

在这里插入图片描述
进而得到 P H 2 = A H ⋅ B H PH^2 = AH·BH PH2=AHBH (通过相似三角形的性质也可证明)
P H = A H ⋅ B H = a ⋅ b PH=\sqrt{AH·BH}=\sqrt{a·b} PH=AHBH =ab
从图中可以看出,PH≤半径OM,即 a b ≤ a + b 2 \sqrt{ab}≤\frac{a+b}{2} ab 2a+b

a 2 + b 2 2 ≥ a + b 2 ≥ a b ≥ 2 a − 1 + b − 1 \sqrt{\frac{a^2+b^2}{2}}≥\frac{a+b}{2}≥\sqrt{ab}≥\frac{2}{a^{-1}+b^{-1}} 2a2+b2 2a+bab a1+b12

这个不等式将的几个均值结合到了一起,并给出了他们的大小关系。掌握了这一长串不等式,可以说掌握了管综数学不等式考点中大部分的内容。
在长为a的线段AC上取一个点B,使得BC的长为b。以AB为直径做一个圆,圆心为O。此时圆的半径 r = a − b 2 r=\frac{a-b}{2} r=2ab,OC长为 O B + B C = a − b 2 + b = a + b 2 OB+BC=\frac{a-b}{2}+b=\frac{a+b}{2} OB+BC=2ab+b=2a+b。过点C作圆O的切线CD,切点为D。
过点D作DE⊥AB于E,过点O作OF⊥AB于O,连接CF、OD、BD。

在这里插入图片描述
从图中还可以看出OA=OD,所以有∠OAD =∠ODA,∠ODA+∠ODB= ∠ODB +∠BDC= 90°,
所以∠ODA = ∠BDC = ∠OAD,即图中标出的三个角相等,进而推出△BCD~△DCA,有 C D 2 = C B ⋅ C A = a . b CD^2 =CB·CA= a.b CD2=CBCA=a.b,即 C D = a b CD=\sqrt{ab} CD=ab
在三角形OCD中,形成了双垂直模型,我们可以得到 C D 2 = C E ⋅ C O CD^2 = CE·CO CD2=CECO
C E = C D 2 C O = a b a + b = 2 a b a + b = 2 a − 1 + b − 1 CE=\frac{CD^2}{CO}=\frac{ab}{a+b}=\frac{2ab}{a+b}=\frac{2}{a^{-1}+b^{-1}} CE=COCD2=a+bab=a+b2ab=a1+b12
C F = O F 2 + O C 2 = ( a + b 2 ) 2 + ( a + b 2 ) 2 = a 2 + b 2 2 CF=\sqrt{OF^2+OC^2}=\sqrt{{(\frac{a+b}{2})}^2+{(\frac{a+b}{2})}^2}=\sqrt{\frac{a^2+b^2}{2}} CF=OF2+OC2 =(2a+b)2+(2a+b)2 =2a2+b2 .
根据三角形三边关系,可以看出CF>OC>CD> CE。
a 2 + b 2 2 ≥ a + b 2 ≥ a b ≥ 2 a − 1 + b − 1 \sqrt{\frac{a^2+b^2}{2}}≥\frac{a+b}{2}≥\sqrt{ab}≥\frac{2}{a^{-1}+b^{-1}} 2a2+b2 2a+bab a1+b12

数列

等差

等差数列前n项和公式: S n = n ( a 1 + a n ) 2 S_n={n(a_1+a_n)\over2} Sn=2n(a1+an)
等差数列的前n项和是考试中的重点部分,基本每年都会进行考察。
通常记这个式子有一个口诀叫“首项加末项乘以项数除以2",那么这句口诀又是怎么来的呢?首先,将前n项和的表达式写出来:
S n = a 1 + a 2 + a 3 + … + a n − 1 + a n S_n= a_1+a_2+ a_3+…+ a_{n-1}+a_n Sn=a1+a2+a3++an1+an
再将前n项和的表达式列一遍,只不过这次,用脚标倒序的顺序表示:
S = a n + a n − 1 + a n − 2 + … + a 2 + a 1 S = a_n+a_{n-1}+a_{n-2}+…+a_2+a_1 S=an+an1+an2++a2+a1
将两个式子等号左右两边分别相加
等号左边=2 S n S_n Sn
等号右边首尾分别相加
在这里插入图片描述
根据等差数列的脚标性质,每一个红框内的值都等于 a 1 + a n a_1+a_n a1+an,一共有n 组,所以等号右边 = n ⋅ ( a 1 + a n ) =n·(a_1+a_n) =n(a1+an)
得到 2 S n = n ⋅ ( a 1 + a n ) 2S_n= n·(a_1+a_n) 2Sn=n(a1+an),即 S n = n ( a 1 + a n ) 2 S_n={n(a_1+a_n)\over2} Sn=2n(a1+an)
另一种方法,因为等差数列相邻两项之差都是公差,我们可以将前n项排列成一个等腰梯形,第一层是a,第二层是 a 2 = a 1 + d a_2=a_1+d a2=a1+d,第三层是 a 3 = a 1 + 2 d . . . . . . a_3=a_1+2d...... a3=a1+2d......以此类推,第n层是 a n a_n an。前n项和 S n S_n Sn可以看做是这个等腰梯形的面积,上底为 a 1 a_1 a1,下底为 a n a_n an。高为n (一共n项) 。所以 S n = 1 2 ( 上底+下底 ) ⋅ 高 = n ( a 1 + a n ) 2 S_n={1\over2}(上底+下底)·高={n(a_1+a_n)\over2} Sn=21(上底+下底)=2n(a1+an)

等比

等比数列前n项和公式 S n = a 1 ( 1 − q n ) 1 − q = a 1 − a n q ) 1 − q ( q ≠ 1 ) S_n={a_1(1-q^n)\over{1-q}}={a_1-a_nq)\over{1-q}}(q≠1) Sn=1qa1(1qn)=1qa1anq)q=1
等比数列前n项和是数列的考察中另一个最常用的公式。下面介绍如何巧记这个公式.首先我们先写出前n项和的表达式,仍然是 S n = a 1 + a 2 + a 3 + … 十 a n − 1 + a n S_n= a_1+a_2+ a_3+…十a_{n-1}+a_n Sn=a1+a2+a3+an1+an
我们将一个 S n S_n Sn去掉首项,得到 S n − a 1 = a 2 + a 3 + a 4 + … + a n − 1 + a n S_n-a_1= a_2+ a_3 + a_4+…+a_{n-1}+a_n Sna1=a2+a3+a4++an1+an.
将另一个 S n S_n Sn去掉最后一项,得到 S n − a n = a 1 + a 2 + a 3 + … + a n − 2 + a n − 1 S_n-a_n = a_1+a_2+a_3+…+a{n-2}+a_{n-1} Snan=a1+a2+a3++an2+an1。这时我们可以如图所示进行观察:
在这里插入图片描述
上边式子等号右面的每一项都是下边等式右边的每一项的q倍。
也就是 S n − a 1 S n − a n = a 2 + a 3 + a 4 + . . . + a n − 1 + a n a 1 + a 2 + a 3 + . . . + a n − 2 + a n − 1 = a 1 + a 2 + a 3 + . . . + a n − 2 + a n − 1 a 1 + a 2 + a 3 + . . . + a n − 2 + a n − 1 \frac{S_n-a_1}{S_n-a_n}=\frac{a_2+a_3+a_4+...+a_{n-1}+a_n}{a_1+a_2+a_3+...+a_{n-2}+a_{n-1}}=\frac{a_1+a_2+a_3+...+a_{n-2}+a_{n-1}}{a_1+a_2+a_3+...+a_{n-2}+a_{n-1}} SnanSna1=a1+a2+a3+...+an2+an1a2+a3+a4+...+an1+an=a1+a2+a3+...+an2+an1a1+a2+a3+...+an2+an1
得到 S n − a 1 S n − a n = q \frac{S_n-a_1}{S_n-a_n}=q SnanSna1=q
整理可得 S n − a 1 = q ⋅ ( S n − a n ) S_n -a_1=q · (S_n - a_n) Sna1=q(Snan)
( 1 − q ) ⋅ S n = a 1 − a n q (1-q)·S_n=a_1-a_nq (1q)Sn=a1anq
S n = a 1 − a n q 1 − q S_n=\frac{a_1-a_nq}{1-q} Sn=1qa1anq

数列中 S n , S 2 n − S n , S 3 n − S 2 n … S_n,S_{2n} -S_n,S_{3n}-S_{2n}… SnS2nSnS3nS2n的讨论

首先将三个式子的表达式列写出来:
S n = a 1 + a 2 + a 3 + … + a n − 1 + a n S_n= a_1+ a_2 + a_3+…+a_{n-1}+ a_n Sn=a1+a2+a3+an1+an
S 2 n − S n = a n + 1 + a n + 2 + a n + 3 + … + a 2 n − 1 + a 2 n S_{2n} -S_n=a_{n+1}+a_{n+2}+a_{n+3}+…+a_{2n-1}+a_{2n} S2nSn=an+1+an+2+an+3++a2n1+a2n
S 3 n − S 2 n = ( a 2 n + 1 + a n + 2 + a n + 3 + … + a 3 n − 1 + a 3 n S_{3n}-S_{2n} =(a_{2n+1}+a_{n+2}+a_{n+3}+…+a_{3n-1}+a_{3n} S3nS2n=(a2n+1+an+2+an+3++a3n1+a3n
先将Sn与S2n的每一项对比来看:
在这里插入图片描述
对应的每一项脚标之差都是n。
当原数列{ a n a_n an}是等差数列时
此时有 a n + 1 = a 1 + n d ; a n + 2 = a 2 + n d ; . . . . . . ; a 2 n = a n + n d a_{n+1}= a_1+ nd;a_{n+2}= a_2+ nd;......;a_{2n} = a_n+nd an+1=a1+ndan+2=a2+nd......a2n=an+nd
S 2 n − S n = ( a 1 + n d ) + ( a 2 + n d ) + … + ( a n − 1 + n d ) + ( a n + n d ) = a 1 + a 2 + a 3 + … + a n − 1 + a n + n ⋅ n d = S n + n 2 ⋅ d S_{2n} - S_n= (a_1+ nd)+(a_2+ nd)+…+(a_{n-1}+ nd) +(a_n +nd) = a_1+ a_2+ a_3+…+a_{n-1}+ a_n + n·nd =S_n+ n^2·d S2nSn=(a1+nd)+(a2+nd)++(an1+nd)+(an+nd)=a1+a2+a3++an1+an+nnd=Sn+n2d
同理验证 S 3 n − S 2 n S_{3n} - S_{2n} S3nS2n S 2 n − S n S_{2n}-S_n S2nSn,可得: S 3 n − S 2 n = S 2 n − S n + n 2 ⋅ d S_{3n} -S_{2n}= S_{2n} -S_n+n^2·d S3nS2n=S2nSn+n2d
进而得出 S n , S 2 n − S n , S 3 n − S 2 n … S_n,S_{2n} -S_n,S_{3n}-S_{2n}… SnS2nSnS3nS2n仍为等差数列,公差为 n 2 ⋅ d n^2·d n2d
当原数列{ a n a_n an}是等比数列时,
此时有 a n + 1 = a 1 ⋅ q n ; a n + 2 = a 2 ⋅ ⋅ ⋅ ⋅ ⋅ q ; . . . ; a 2 n = a n ⋅ q n a_{n+1} = a_1·q^n;a_{n+2} = a_2·····q;...;a_{2n}= a_n· q^n an+1=a1qnan+2=a2⋅⋅⋅⋅⋅q...a2n=anqn
S 2 n − S n = a 1 ⋅ q n + a 2 ⋅ q n + … + a n − 1 ⋅ q n + a n ⋅ q n = ( a 1 + a 2 + … + a n − 1 + a n ) ⋅ q n = S n ⋅ q n S_{2n}-S_n = a_1·q^n+ a_2·q^n+…+a_{n-1}·q^n+a_n·q^n = (a_1+ a_2+…+ a_{n-1}+a_n)·q^n=S_n ·q^n S2nSn=a1qn+a2qn++an1qn+anqn=(a1+a2++an1+an)qn=Snqn
同理验证 S 3 n − S 2 n S_{3n}-S_{2n} S3nS2n S 2 n − S n S_{2n}-S_{n} S2nSn可得: S 3 n − S 2 n S_{3n}-S_{2n} S3nS2n
进而可以得出 S n , S 2 n − S n , S 3 n − S 2 n … S_n,S_{2n} -S_n,S_{3n}-S_{2n}… SnS2nSnS3nS2n仍为等比数列,公比为 q n q^n qn
综上,我们可以得出结论:

原数列{ a n a_n an}是等差数列, S n , S 2 n − S n , S 3 n − S 2 n … S_n,S_{2n} -S_n,S_{3n}-S_{2n}… SnS2nSnS3nS2n仍为等差数列,公差为 n 2 ⋅ d n^2·d n2d
原数列{ a n a_n an}是等比数列, S n , S 2 n − S n , S 3 n − S 2 n … S_n,S_{2n}-S_n,S_{3n} -S_{2n}… SnS2nSnS3nS2n仍为等比数列,公比为 q n q^n qn

几何

勾股定理的证明

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形。勾股定理是历史上第一个把数与形联系起来的定理,引导了无理数的发现。勾股定理现约有500种证明方法,下面介绍一种最常用的方法:
构造一个如图所示的直角梯形 ABCD,∠A=∠C = 90°,其上底AB长为a,下底CD长为b,高AC长度为a+b,在AC上取点E,使AE= a,CE=b,设BE长度为c.

在这里插入图片描述
此时有△AEB ≌ △CDE,得到BE=DE=c。
同时有∠ABE +∠AEC=∠AEB +∠CED= 90°,所以∠BED = 90°。从而得到BE⊥DE。
直角梯形面积 S = 1 2 ⋅ ( 上底 + 下底 ) ⋅ 高 = 1 2 ( A B + C D ) ⋅ A C = 1 2 ( a + b ) 2 S=\frac{1}{2}·(上底+下底)·高=\frac{1}{2}(AB +CD)·AC=\frac{1}{2}(a+b)^2 S=21(上底+下底)=21(AB+CD)AC=21(a+b)2
这个梯形同时被分为了3个三角形,这三个三角形面积分别为 1 2 a b 、 1 2 a b 、 1 2 c 2 \frac{1}{2}ab、\frac{1}{2}ab、\frac{1}{2}c^2 21ab21ab21c2
所以有 1 2 ( a + b ) 2 = 1 2 a 2 + 1 2 b 2 + a b = 1 2 a b + 1 2 a b + 1 2 c 2 \frac{1}{2}(a+b)^2=\frac{1}{2}a^2 +\frac{1}{2}b^2+ ab=\frac{1}{2}ab+\frac{1}{2}ab+\frac{1}{2}c^2 21(a+b)2=21a2+21b2+ab=21ab+21ab+21c2
化简为 1 2 a 2 + 1 2 b 2 = 1 2 c 2 \frac{1}{2}a^2+\frac{1}{2}b^2=\frac{1}{2}c^2 21a2+21b2=21c2
a 2 + b 2 = c 2 a^2+b^2=c^2 a2+b2=c2
用类似的思路,用4个全等的直角三角形(△AEH、△BFE、△FCG、△GDH),直角边长为a和b,直角边长为c,如图所示拼成一个正方形ABCD。
在这里插入图片描述

同样是面积相等的思路。 大正方形面积 = ( a + b ) 2 大正方形面积=(a+b)^2 大正方形面积=(a+b)2。可分为一个小正方形和4个全等的直角三角形,面积之和为 c 2 + 4 × 1 2 a b = c 2 + 2 a b = ( a + b ) 2 c^2+4×\frac{1}{2}ab=c^2+2ab=(a+b)^2 c2+4×21ab=c2+2ab=(a+b)2
整理得 a 2 + b 2 = c 2 a^2 +b^2=c^2 a2+b2=c2

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fo安方

觉得俺的文章还行,感谢打赏,爱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值