🏠个人主页:fo安方的博客✨
💂个人简历:大家好,我是fo安方,考取过HCIE Cloud Computing、CCIE Security、CISP、RHCE、CCNP RS、PEST 3等证书。🐳
💕兴趣爱好:b站天天刷,题目常常看,运动偶尔做。🎐
💅欢迎大家:这里是CSDN,是我记录我的日常学习,偶尔生活的地方,喜欢的话请一键三连,有问题请评论区讨论。🌺
🥣专栏:目前专栏免费free,欢迎订阅管理类联考不迷路!这是专栏的导航页→入栏需看——全国硕士研究生入学统一考试管理类专业学位联考,阅读无烦恼。🌊
🪁 希望本文能够给读者带来一定的帮助~🌸文章粗浅,敬请批评指正!🐥
算术
中国剩余定理
在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?“翻译成现代文就是“有一个数除以3余2,除以5余3,除以7余2,问这个数是多少? "
这种余数问题是联考数学里比较不好想的问题。先从一个简单的问题入手。将这道题加以修改,“一个数除以3余1,除以5余3,除以7余5,问这个数最小是多少?“改后的题目与原题又有什么区别呢?
改后的题目,除数与余数的差都是相同的(3-1=2、5-3=2、7-5=2)。试想将这个数加2后,可以同时被3、5、7整除,也就是说这个数加2后是3、5、7的最小公倍数105,这个数就是103。
当除数与余数的差不相等时,这种方法就不太适用了。这时就可以用到中国剩余定理。
回到原题,“有一个数除以3余2,除以5余3,除以7余2,问这个数是多少?"解法主要分为3步:
- 找出三个数这三个数分别为
3和5的公倍数中被7除余1的最小数,15
5和7的公倍数中被3除余1的最小数,70
3和7的公倍数中被5除余1的最小数,21 - 将15乘2 (2为所求数除以7的余数),70乘2 (2为所求数除以3的余数),21乘3 (3为所求数除以5的余数) 。将三个乘积相加,15x2+70x2+21x3=233。
- 算出3、5、7的最小公倍数105,用233除以105,得到的余数 23就是我们要求的最小数。
代数
整式及其运算
- 完全平方公式:
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
(a+b)^2=a^2+2ab+b^2
(a+b)2=a2+2ab+b2
先画出一个边长为
a
+
b
a+b
a+b的正方形,它的面积就是
(
a
+
b
)
2
(a+b)^2
(a+b)2。在相邻两边上分别取长度为a的一段,分别作对应边上的垂线。将正方形用两条垂直的直线进行如图切割,一个大正方形就被分成了四部分。
分别是一个边长为α的正方形、一个边长为b的正方形、两个长为b,宽为α的矩形.他们的面积分别为
a
2
、
b
2
、
a
⋅
b
a^2、b^2、a·b
a2、b2、a⋅b。
大正方形被拆分成了4部分,面积也就等于四部分的面积之和
=
a
2
+
b
2
+
a
b
+
a
b
=a^2+b^2+ab+ab
=a2+b2+ab+ab,即
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
(a+b)^2=a^2+2ab+b^2
(a+b)2=a2+2ab+b2
- ( a − b ) 2 = a 2 − 2 a b + b 2 (a-b)^2=a^2-2ab+b^2 (a−b)2=a2−2ab+b2
这个公式有两种记忆的方法
第一种方法:对比法
可以与
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
(a+b)^2=a^2+2ab+b^2
(a+b)2=a2+2ab+b2做一个对比,不同的部分在于一个是a+b,另一个是a一b。换一个角度想,我们可以把a-b想成a+(-b)。也就是
(
a
−
b
)
2
=
[
a
+
(
−
b
)
]
2
(a-b)^2=[a+(-b)]^2
(a−b)2=[a+(−b)]2。用一b替换原来公式中 b。即
(
a
−
b
)
2
=
[
a
+
(
−
b
)
]
2
=
a
2
+
2
a
⋅
(
−
b
)
+
(
−
b
)
2
=
a
2
−
2
a
b
+
b
2
(a-b)^2=[a+(-b)]^2=a^2+2a·(-b)+(-b)^2=a^2-2ab+b^2
(a−b)2=[a+(−b)]2=a2+2a⋅(−b)+(−b)2=a2−2ab+b2。
第二种方法:几何法
仍然是先画出一个正方形ABCD,他的边长为α、从正方形一个顶点C,在大正方形内再做一个边长为
a
−
b
(
b
<
a
)
a-b(b<a)
a−b(b<a)的小正方形CFMH(蓝色部分),小正方形 CFMH的面积即为所求。
延长小正方形的边长FM、HM交大正方形的边AB、AD于G、E点,将大正方形变成了三部分,
C
F
M
H
的面积
=
正方形
A
B
C
D
的面积
−
其他部分面积
CFMH的面积=正方形ABCD的面积-其他部分面积
CFMH的面积=正方形ABCD的面积−其他部分面积,其他部分被分成了两个长宽为a和b的矩形(矩形AGHD和矩形ABFE),但是两个长方形中有一个边长为b的正方形部分(正方形AGME)是重复的.所以
其他部分的面积
=
两个矩形的面积之和
2
a
⋅
b
−
正方形
C
F
M
H
的面积
b
2
=
2
a
b
−
b
2
其他部分的面积=两个矩形的面积之和2a·b-正方形CFMH的面积b^2=2ab-b^2
其他部分的面积=两个矩形的面积之和2a⋅b−正方形CFMH的面积b2=2ab−b2也就是
蓝色正方形的面积
=
大正方形面积
−
其他部分面积
蓝色正方形的面积=大正方形面积-其他部分面积
蓝色正方形的面积=大正方形面积−其他部分面积
即
(
a
−
b
)
2
=
a
2
−
(
2
a
b
−
b
2
)
=
a
2
−
2
a
b
+
b
2
(a- b)^2= a^2-(2ab-b^2) = a^2- 2ab+ b^2
(a−b)2=a2−(2ab−b2)=a2−2ab+b2
-
a
2
−
b
2
=
(
a
+
b
)
(
a
−
b
)
a^2-b^2=(a+b)(a-b)
a2−b2=(a+b)(a−b)
平方差公式是一个很简单的公式,也是一个很常用的公式,如何巧妙地记住它,下面给出两种方法。
第一种方法是代数法,我们给等式的左边加上一个a·b,为了使原来式子的大小不变,还要再减去一个a·b,于是将 a 2 − b 2 a^2-b^2 a2−b2整理成 a 2 − b 2 + a b − a b a^2-b^2+ab-ab a2−b2+ab−ab。
再分配一下得到 ( a 2 + a b ) − ( b 2 + a b ) = a − ( a + b ) − b − ( a + b ) = ( a + b ) ⋅ ( a − b ) (a^2+ ab)-(b^2+ab)= a -(a + b)- b-(a + b)=(a+ b)·(a- b) (a2+ab)−(b2+ab)=a−(a+b)−b−(a+b)=(a+b)⋅(a−b),即 a 2 − b 2 = ( a + b ) ⋅ ( a − b ) a^2-b^2= (a+b)·(a- b) a2−b2=(a+b)⋅(a−b)。
第二种方法还是用几何法:
先画出一个边长为α的正方形ABCD
以A为一个顶点,以AB、AD为临边做一个边长为b的小正方形AEMF。
其中大正方形面积为 a 2 a^2 a2,小正方形面积为 b 2 b^2 b2,蓝色部分的面积即为所求 a 2 − b 2 a^2-b^2 a2−b2。
此时延长FM交BC于N,将矩形BNME经过平移,旋转至图中 CNB’E’位置蓝色部分就变成了一个新的矩形DFE’B’,其面积=(a+b)·(a- b).
即 a 2 − b 2 = ( a + b ) ⋅ ( a − b ) a^2-b^2=(a+b)·(a-b) a2−b2=(a+b)⋅(a−b)
不等式
基本不等式:对于正数a,b,有 a + b 2 ≥ a b \frac{a+b}{2}≥\sqrt{ab} 2a+b≥ab
基本不等式是解不等式相关题目中用到最多的一个公式,也是所有不等式定理中最基本的一个。我们可以通过一个圆去理解并轻松地记忆这个公式。
首先,确定一个以O为圆心,AB为直径,直径长为a+b的圆。其中AH长为a,BH长为b,做PH⊥AB于H点。
因为AB为直径,所以∠APB=90°,AP⊥BP,又PH⊥AB,所以形成了双垂直模型(如图中,蓝色部分)。
进而得到
P
H
2
=
A
H
⋅
B
H
PH^2 = AH·BH
PH2=AH⋅BH (通过相似三角形的性质也可证明)
P
H
=
A
H
⋅
B
H
=
a
⋅
b
PH=\sqrt{AH·BH}=\sqrt{a·b}
PH=AH⋅BH=a⋅b
从图中可以看出,PH≤半径OM,即
a
b
≤
a
+
b
2
\sqrt{ab}≤\frac{a+b}{2}
ab≤2a+b。
a 2 + b 2 2 ≥ a + b 2 ≥ a b ≥ 2 a − 1 + b − 1 \sqrt{\frac{a^2+b^2}{2}}≥\frac{a+b}{2}≥\sqrt{ab}≥\frac{2}{a^{-1}+b^{-1}} 2a2+b2≥2a+b≥ab≥a−1+b−12
这个不等式将的几个均值结合到了一起,并给出了他们的大小关系。掌握了这一长串不等式,可以说掌握了管综数学不等式考点中大部分的内容。
在长为a的线段AC上取一个点B,使得BC的长为b。以AB为直径做一个圆,圆心为O。此时圆的半径
r
=
a
−
b
2
r=\frac{a-b}{2}
r=2a−b,OC长为
O
B
+
B
C
=
a
−
b
2
+
b
=
a
+
b
2
OB+BC=\frac{a-b}{2}+b=\frac{a+b}{2}
OB+BC=2a−b+b=2a+b。过点C作圆O的切线CD,切点为D。
过点D作DE⊥AB于E,过点O作OF⊥AB于O,连接CF、OD、BD。
从图中还可以看出OA=OD,所以有∠OAD =∠ODA,∠ODA+∠ODB= ∠ODB +∠BDC= 90°,
所以∠ODA = ∠BDC = ∠OAD,即图中标出的三个角相等,进而推出△BCD~△DCA,有
C
D
2
=
C
B
⋅
C
A
=
a
.
b
CD^2 =CB·CA= a.b
CD2=CB⋅CA=a.b,即
C
D
=
a
b
CD=\sqrt{ab}
CD=ab。
在三角形OCD中,形成了双垂直模型,我们可以得到
C
D
2
=
C
E
⋅
C
O
CD^2 = CE·CO
CD2=CE⋅CO。
C
E
=
C
D
2
C
O
=
a
b
a
+
b
=
2
a
b
a
+
b
=
2
a
−
1
+
b
−
1
CE=\frac{CD^2}{CO}=\frac{ab}{a+b}=\frac{2ab}{a+b}=\frac{2}{a^{-1}+b^{-1}}
CE=COCD2=a+bab=a+b2ab=a−1+b−12
而
C
F
=
O
F
2
+
O
C
2
=
(
a
+
b
2
)
2
+
(
a
+
b
2
)
2
=
a
2
+
b
2
2
CF=\sqrt{OF^2+OC^2}=\sqrt{{(\frac{a+b}{2})}^2+{(\frac{a+b}{2})}^2}=\sqrt{\frac{a^2+b^2}{2}}
CF=OF2+OC2=(2a+b)2+(2a+b)2=2a2+b2.
根据三角形三边关系,可以看出CF>OC>CD> CE。
即
a
2
+
b
2
2
≥
a
+
b
2
≥
a
b
≥
2
a
−
1
+
b
−
1
\sqrt{\frac{a^2+b^2}{2}}≥\frac{a+b}{2}≥\sqrt{ab}≥\frac{2}{a^{-1}+b^{-1}}
2a2+b2≥2a+b≥ab≥a−1+b−12。
数列
等差
等差数列前n项和公式:
S
n
=
n
(
a
1
+
a
n
)
2
S_n={n(a_1+a_n)\over2}
Sn=2n(a1+an)
等差数列的前n项和是考试中的重点部分,基本每年都会进行考察。
通常记这个式子有一个口诀叫“首项加末项乘以项数除以2",那么这句口诀又是怎么来的呢?首先,将前n项和的表达式写出来:
S
n
=
a
1
+
a
2
+
a
3
+
…
+
a
n
−
1
+
a
n
S_n= a_1+a_2+ a_3+…+ a_{n-1}+a_n
Sn=a1+a2+a3+…+an−1+an
再将前n项和的表达式列一遍,只不过这次,用脚标倒序的顺序表示:
S
=
a
n
+
a
n
−
1
+
a
n
−
2
+
…
+
a
2
+
a
1
S = a_n+a_{n-1}+a_{n-2}+…+a_2+a_1
S=an+an−1+an−2+…+a2+a1
将两个式子等号左右两边分别相加
等号左边=2
S
n
S_n
Sn;
等号右边首尾分别相加
根据等差数列的脚标性质,每一个红框内的值都等于
a
1
+
a
n
a_1+a_n
a1+an,一共有n 组,所以等号右边
=
n
⋅
(
a
1
+
a
n
)
=n·(a_1+a_n)
=n⋅(a1+an)
得到
2
S
n
=
n
⋅
(
a
1
+
a
n
)
2S_n= n·(a_1+a_n)
2Sn=n⋅(a1+an),即
S
n
=
n
(
a
1
+
a
n
)
2
S_n={n(a_1+a_n)\over2}
Sn=2n(a1+an)
另一种方法,因为等差数列相邻两项之差都是公差,我们可以将前n项排列成一个等腰梯形,第一层是a,第二层是
a
2
=
a
1
+
d
a_2=a_1+d
a2=a1+d,第三层是
a
3
=
a
1
+
2
d
.
.
.
.
.
.
a_3=a_1+2d......
a3=a1+2d......以此类推,第n层是
a
n
a_n
an。前n项和
S
n
S_n
Sn可以看做是这个等腰梯形的面积,上底为
a
1
a_1
a1,下底为
a
n
a_n
an。高为n (一共n项) 。所以
S
n
=
1
2
(
上底+下底
)
⋅
高
=
n
(
a
1
+
a
n
)
2
S_n={1\over2}(上底+下底)·高={n(a_1+a_n)\over2}
Sn=21(上底+下底)⋅高=2n(a1+an)。
等比
等比数列前n项和公式
S
n
=
a
1
(
1
−
q
n
)
1
−
q
=
a
1
−
a
n
q
)
1
−
q
(
q
≠
1
)
S_n={a_1(1-q^n)\over{1-q}}={a_1-a_nq)\over{1-q}}(q≠1)
Sn=1−qa1(1−qn)=1−qa1−anq)(q=1)
等比数列前n项和是数列的考察中另一个最常用的公式。下面介绍如何巧记这个公式.首先我们先写出前n项和的表达式,仍然是
S
n
=
a
1
+
a
2
+
a
3
+
…
十
a
n
−
1
+
a
n
S_n= a_1+a_2+ a_3+…十a_{n-1}+a_n
Sn=a1+a2+a3+…十an−1+an。
我们将一个
S
n
S_n
Sn去掉首项,得到
S
n
−
a
1
=
a
2
+
a
3
+
a
4
+
…
+
a
n
−
1
+
a
n
S_n-a_1= a_2+ a_3 + a_4+…+a_{n-1}+a_n
Sn−a1=a2+a3+a4+…+an−1+an.
将另一个
S
n
S_n
Sn去掉最后一项,得到
S
n
−
a
n
=
a
1
+
a
2
+
a
3
+
…
+
a
n
−
2
+
a
n
−
1
S_n-a_n = a_1+a_2+a_3+…+a{n-2}+a_{n-1}
Sn−an=a1+a2+a3+…+an−2+an−1。这时我们可以如图所示进行观察:
上边式子等号右面的每一项都是下边等式右边的每一项的q倍。
也就是
S
n
−
a
1
S
n
−
a
n
=
a
2
+
a
3
+
a
4
+
.
.
.
+
a
n
−
1
+
a
n
a
1
+
a
2
+
a
3
+
.
.
.
+
a
n
−
2
+
a
n
−
1
=
a
1
+
a
2
+
a
3
+
.
.
.
+
a
n
−
2
+
a
n
−
1
a
1
+
a
2
+
a
3
+
.
.
.
+
a
n
−
2
+
a
n
−
1
\frac{S_n-a_1}{S_n-a_n}=\frac{a_2+a_3+a_4+...+a_{n-1}+a_n}{a_1+a_2+a_3+...+a_{n-2}+a_{n-1}}=\frac{a_1+a_2+a_3+...+a_{n-2}+a_{n-1}}{a_1+a_2+a_3+...+a_{n-2}+a_{n-1}}
Sn−anSn−a1=a1+a2+a3+...+an−2+an−1a2+a3+a4+...+an−1+an=a1+a2+a3+...+an−2+an−1a1+a2+a3+...+an−2+an−1
得到
S
n
−
a
1
S
n
−
a
n
=
q
\frac{S_n-a_1}{S_n-a_n}=q
Sn−anSn−a1=q
整理可得
S
n
−
a
1
=
q
⋅
(
S
n
−
a
n
)
S_n -a_1=q · (S_n - a_n)
Sn−a1=q⋅(Sn−an)
(
1
−
q
)
⋅
S
n
=
a
1
−
a
n
q
(1-q)·S_n=a_1-a_nq
(1−q)⋅Sn=a1−anq
即
S
n
=
a
1
−
a
n
q
1
−
q
S_n=\frac{a_1-a_nq}{1-q}
Sn=1−qa1−anq
数列中 S n , S 2 n − S n , S 3 n − S 2 n … S_n,S_{2n} -S_n,S_{3n}-S_{2n}… Sn,S2n−Sn,S3n−S2n…的讨论
首先将三个式子的表达式列写出来:
S
n
=
a
1
+
a
2
+
a
3
+
…
+
a
n
−
1
+
a
n
S_n= a_1+ a_2 + a_3+…+a_{n-1}+ a_n
Sn=a1+a2+a3+…+an−1+an
S
2
n
−
S
n
=
a
n
+
1
+
a
n
+
2
+
a
n
+
3
+
…
+
a
2
n
−
1
+
a
2
n
S_{2n} -S_n=a_{n+1}+a_{n+2}+a_{n+3}+…+a_{2n-1}+a_{2n}
S2n−Sn=an+1+an+2+an+3+…+a2n−1+a2n
S
3
n
−
S
2
n
=
(
a
2
n
+
1
+
a
n
+
2
+
a
n
+
3
+
…
+
a
3
n
−
1
+
a
3
n
S_{3n}-S_{2n} =(a_{2n+1}+a_{n+2}+a_{n+3}+…+a_{3n-1}+a_{3n}
S3n−S2n=(a2n+1+an+2+an+3+…+a3n−1+a3n
先将Sn与S2n的每一项对比来看:
对应的每一项脚标之差都是n。
当原数列{
a
n
a_n
an}是等差数列时
此时有
a
n
+
1
=
a
1
+
n
d
;
a
n
+
2
=
a
2
+
n
d
;
.
.
.
.
.
.
;
a
2
n
=
a
n
+
n
d
a_{n+1}= a_1+ nd;a_{n+2}= a_2+ nd;......;a_{2n} = a_n+nd
an+1=a1+nd;an+2=a2+nd;......;a2n=an+nd
S
2
n
−
S
n
=
(
a
1
+
n
d
)
+
(
a
2
+
n
d
)
+
…
+
(
a
n
−
1
+
n
d
)
+
(
a
n
+
n
d
)
=
a
1
+
a
2
+
a
3
+
…
+
a
n
−
1
+
a
n
+
n
⋅
n
d
=
S
n
+
n
2
⋅
d
S_{2n} - S_n= (a_1+ nd)+(a_2+ nd)+…+(a_{n-1}+ nd) +(a_n +nd) = a_1+ a_2+ a_3+…+a_{n-1}+ a_n + n·nd =S_n+ n^2·d
S2n−Sn=(a1+nd)+(a2+nd)+…+(an−1+nd)+(an+nd)=a1+a2+a3+…+an−1+an+n⋅nd=Sn+n2⋅d
同理验证
S
3
n
−
S
2
n
S_{3n} - S_{2n}
S3n−S2n与
S
2
n
−
S
n
S_{2n}-S_n
S2n−Sn,可得:
S
3
n
−
S
2
n
=
S
2
n
−
S
n
+
n
2
⋅
d
S_{3n} -S_{2n}= S_{2n} -S_n+n^2·d
S3n−S2n=S2n−Sn+n2⋅d
进而得出
S
n
,
S
2
n
−
S
n
,
S
3
n
−
S
2
n
…
S_n,S_{2n} -S_n,S_{3n}-S_{2n}…
Sn,S2n−Sn,S3n−S2n…仍为等差数列,公差为
n
2
⋅
d
n^2·d
n2⋅d。
当原数列{
a
n
a_n
an}是等比数列时,
此时有
a
n
+
1
=
a
1
⋅
q
n
;
a
n
+
2
=
a
2
⋅
⋅
⋅
⋅
⋅
q
;
.
.
.
;
a
2
n
=
a
n
⋅
q
n
a_{n+1} = a_1·q^n;a_{n+2} = a_2·····q;...;a_{2n}= a_n· q^n
an+1=a1⋅qn;an+2=a2⋅⋅⋅⋅⋅q;...;a2n=an⋅qn
S
2
n
−
S
n
=
a
1
⋅
q
n
+
a
2
⋅
q
n
+
…
+
a
n
−
1
⋅
q
n
+
a
n
⋅
q
n
=
(
a
1
+
a
2
+
…
+
a
n
−
1
+
a
n
)
⋅
q
n
=
S
n
⋅
q
n
S_{2n}-S_n = a_1·q^n+ a_2·q^n+…+a_{n-1}·q^n+a_n·q^n = (a_1+ a_2+…+ a_{n-1}+a_n)·q^n=S_n ·q^n
S2n−Sn=a1⋅qn+a2⋅qn+…+an−1⋅qn+an⋅qn=(a1+a2+…+an−1+an)⋅qn=Sn⋅qn
同理验证
S
3
n
−
S
2
n
S_{3n}-S_{2n}
S3n−S2n与
S
2
n
−
S
n
S_{2n}-S_{n}
S2n−Sn可得:
S
3
n
−
S
2
n
S_{3n}-S_{2n}
S3n−S2n
进而可以得出
S
n
,
S
2
n
−
S
n
,
S
3
n
−
S
2
n
…
S_n,S_{2n} -S_n,S_{3n}-S_{2n}…
Sn,S2n−Sn,S3n−S2n…仍为等比数列,公比为
q
n
q^n
qn。
综上,我们可以得出结论:
原数列{
a
n
a_n
an}是等差数列,
S
n
,
S
2
n
−
S
n
,
S
3
n
−
S
2
n
…
S_n,S_{2n} -S_n,S_{3n}-S_{2n}…
Sn,S2n−Sn,S3n−S2n…仍为等差数列,公差为
n
2
⋅
d
n^2·d
n2⋅d。
原数列{
a
n
a_n
an}是等比数列,
S
n
,
S
2
n
−
S
n
,
S
3
n
−
S
2
n
…
S_n,S_{2n}-S_n,S_{3n} -S_{2n}…
Sn,S2n−Sn,S3n−S2n…仍为等比数列,公比为
q
n
q^n
qn。
几何
勾股定理的证明
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形。勾股定理是历史上第一个把数与形联系起来的定理,引导了无理数的发现。勾股定理现约有500种证明方法,下面介绍一种最常用的方法:
构造一个如图所示的直角梯形 ABCD,∠A=∠C = 90°,其上底AB长为a,下底CD长为b,高AC长度为a+b,在AC上取点E,使AE= a,CE=b,设BE长度为c.
此时有△AEB ≌ △CDE,得到BE=DE=c。
同时有∠ABE +∠AEC=∠AEB +∠CED= 90°,所以∠BED = 90°。从而得到BE⊥DE。
直角梯形面积
S
=
1
2
⋅
(
上底
+
下底
)
⋅
高
=
1
2
(
A
B
+
C
D
)
⋅
A
C
=
1
2
(
a
+
b
)
2
S=\frac{1}{2}·(上底+下底)·高=\frac{1}{2}(AB +CD)·AC=\frac{1}{2}(a+b)^2
S=21⋅(上底+下底)⋅高=21(AB+CD)⋅AC=21(a+b)2。
这个梯形同时被分为了3个三角形,这三个三角形面积分别为
1
2
a
b
、
1
2
a
b
、
1
2
c
2
\frac{1}{2}ab、\frac{1}{2}ab、\frac{1}{2}c^2
21ab、21ab、21c2。
所以有
1
2
(
a
+
b
)
2
=
1
2
a
2
+
1
2
b
2
+
a
b
=
1
2
a
b
+
1
2
a
b
+
1
2
c
2
\frac{1}{2}(a+b)^2=\frac{1}{2}a^2 +\frac{1}{2}b^2+ ab=\frac{1}{2}ab+\frac{1}{2}ab+\frac{1}{2}c^2
21(a+b)2=21a2+21b2+ab=21ab+21ab+21c2。
化简为
1
2
a
2
+
1
2
b
2
=
1
2
c
2
\frac{1}{2}a^2+\frac{1}{2}b^2=\frac{1}{2}c^2
21a2+21b2=21c2。
即
a
2
+
b
2
=
c
2
a^2+b^2=c^2
a2+b2=c2。
用类似的思路,用4个全等的直角三角形(△AEH、△BFE、△FCG、△GDH),直角边长为a和b,直角边长为c,如图所示拼成一个正方形ABCD。
同样是面积相等的思路。
大正方形面积
=
(
a
+
b
)
2
大正方形面积=(a+b)^2
大正方形面积=(a+b)2。可分为一个小正方形和4个全等的直角三角形,面积之和为
c
2
+
4
×
1
2
a
b
=
c
2
+
2
a
b
=
(
a
+
b
)
2
c^2+4×\frac{1}{2}ab=c^2+2ab=(a+b)^2
c2+4×21ab=c2+2ab=(a+b)2。
整理得
a
2
+
b
2
=
c
2
a^2 +b^2=c^2
a2+b2=c2。