计算特征之间的相关性用矩阵相关性方法corr_matrix = features_df.corr().abs().round(2)

以下是将以上代码转换为 Pyecharts 的代码: ``` import pandas as pd from pyecharts import options as opts from pyecharts.charts import HeatMap # 假设 risk_factor_df 是已经读入的 DataFrame 对象 risk_factor_df.fillna(0, inplace=True) # 将 DataFrame 转换为字符串,并去除两端的空格 risk_factor_df1 = str(risk_factor_df).strip() # 将字符串中的 "//" 和 "?" 替换成 0 risk_factor_df1 = risk_factor_df1.replace("//", "0") risk_factor_df1 = risk_factor_df1.replace("?", "0") # 将字符串转换为 DataFrame risk_factor_df2 = pd.read_csv(pd.compat.StringIO(risk_factor_df1)) # 计算相关系数矩阵 corr_matrix = risk_factor_df2.corr() # 将矩阵转换为列表 corr_matrix_list = corr_matrix.values.tolist() # 绘制热力图 heatmap = HeatMap() heatmap.add_xaxis(list(corr_matrix.columns)) heatmap.add_yaxis("", list(corr_matrix.index), corr_matrix_list) heatmap.set_global_opts( title_opts=opts.TitleOpts(title="Risk Factor Correlation Heatmap"), visualmap_opts=opts.VisualMapOpts(is_show=True, min_=corr_matrix.min().min(), max_=corr_matrix.max().max()) ) heatmap.render("correlation_heatmap.html") ``` 这里使用了 Pyecharts 的 `HeatMap` 组件来绘制相关性热力图。首先需要将 DataFrame 转换为字符串,并去除两端的空格,然后将字符串转换为 DataFrame,计算相关系数矩阵并将其转换为列表。在绘制热力图时,需要将列名作为 X 轴,行名作为 Y 轴,将相关系数列表作为值。同时,还需要设置热力图的标题和视觉映射范围等参数。最后将图表保存为 HTML 文件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值