1. 基础知识点
1.1 工作量s, 工作效率v, 工作时间t 三者的关系
- 工作量 = 工作效率 * 工作时间 即 s = vt
- 工作时间 = 工作量 / 工作效率 即 t = s/v
- 工作效率 = 工作量 / 时间, 即 v = s/t
重要说明: 时间t一定,效率与总量成正比
1.2 重要结论
若甲单独完成需要 m 天,乙单独完成需要 n 天,则
-
- 甲的效率为 1/m, 乙的效率为 1/n
-
- 甲乙合作的效率为: 1/m + 1/n (效率可以相加减)
-
- 甲乙合作完成需要时间为 1 /(1/m + 1/n)= mn / (m+n)
1.3 思路点拨
遇到工程量问题,通常将整个工程量(放水量)看出单位1,然后根据题干条件按比例求解。
通常假设总量(工程量、放水量)= 1 进行分析
-【重要公式】总效率=各效率代数和
- 工作效率=工作量 / 工作时间
- 总量=部分量 / 其对应的比例
2. 例题
例题1:修一条公路,甲队单独施工需要40天完成,乙队单独施工需要24天完成,现在两队同时从2端开工,结果在距离中点7.5 km处会和完工,则这条公路的长度为()km
解:设这条公路长度 s km
由甲队单独施工需要40天完成,得甲队效率为 s / 40
由乙队单独施工需要24天完成,得乙队效率为 s / 24
由现在两队同时从2端开工,结果在距离中点7.5 km处会和完工
1. 从效率得知乙队效率最高
2. 甲乙在距离中点7.5 km处会和完工,说明这段时间是相同
3. 甲施工的长度为 s/2 - 7.5 km, 乙队施工的长度为 s/2 + 7.5 km
故得到如下关系:时间 = 工作量 / 效率
(s/2 - 7.5) / (s / 40) = (s/2 + 7.5)/ (s / 24)
(s/2 - 7.5) * (s / 24) = (s / 40) * (s/2 + 7.5)
(s/2 - 7.5) * (1/24) = (1 / 40) *(s/2 + 7.5)
(1/24) / (1 / 40) = (s/2 + 7.5)/ (s/2 - 7.5)
5/3 = (s/2 + 7.5)/ (s/2 - 7.5)
s = 60 km