一、gguf的q4_k_m量化和GPTQ的4bit量化,哪个更好?
GGUF的q4_k_m量化和GPTQ的4-bit量化各有优缺点,具体选择取决于应用场景和需求。
(一)GGUF的q4_k_m量化
GGUF的q4_k_m量化是一种k-quantization方法,即不同层使用不同精度的量化。这种方法通过智能地分配比特数,能够在保持模型性能的同时减少内存使用。q4_k_m量化将Q6_K用于一半的attention.wv和feed_forward.w2张量,否则使用Q4_K,这种混合量化方式在保持模型性能方面表现出色12。
(二)GPTQ的4-bit量化
GPTQ的4-bit量化是一种传统的量化方法,每个层都使用相同的4-bit精度进行量化。这种方法实现简单,解压缩方便,通常通过位移、AND和乘法操作实现2。虽然GPTQ的4-bit量化在计算效率上可能更高,但在保持模型性能方面可能不如q4_k_m量化12。
(三)适用场景和性能对比
- 性能保持:q4_k_m量化通过在不同层使用不同精度的量化,能够在保持模型大部分性能的同时减少内存使用。相比之下,GPTQ的4-bit量化可能在某些情况下会牺牲一些模型性能来换取计算效率12。
- 内存使用:q4_k_m量化由于在不同层使用不同精度的量化,可以在保持模型性能的同时减少内存使用。而GPTQ的4-bit量化由于所有层使用相同的精度,可能在内存使用上没有显著优势12。
(四)结论
选择GGUF的q4_k_m量化还是GPTQ的4-bit量化取决于具体需求。如果需要在保持模型性能的同时减少内存使用,q4_k_m量化是更好的选择。如果更注重计算效率且可以接受一定的性能损失,GPTQ的4-bit量化可能更合适
二、.gguf的模型还能通过vllm进行加载吗?
不能,vLLM 目前不支持直接加载 GGUF 格式的量化模型。GGUF 格式主要是为 llama.cpp 设计的,而 vLLM 支持的量化格式主要包括:
- AWQ
- GPTQ
- SqueezeLLM
- FP8
对于 GGUF 格式的模型,您需要使用 llama.cpp 或 llama-cpp-python 来加载。以下是使用 llama-cpp-python 加载 GGUF 模型的示例:
from llama_cpp import Llama
import time
# 加载 GGUF 模型
llm = Llama(
model_path="/path/to/your/model.gguf",
n_threads=8, # CPU 线程数
n_batch=512, # 批处理大小
n_gpu_layers=32, # GPU 加速层数(如果支持)
verbose=True # 显示详细日志
)
# 设置生成参数
params = {
"max_tokens": 4096,
"temperature": 0.9,
"top_p": 0.95,
"stream": False # 是否使用流式输出
}
# 进行推理
start_time = time.time()
output = llm(
prompt, # 您的提示词
**params
)
end_time = time.time()
# 打印结果和性能指标
print(f"\n生成结果:")
print(output['choices'][0]['text'])
print(f"\n生成时间: {end_time - start_time:.2f} 秒")
如果您需要使用 vLLM 的功能,建议:
- 使用支持的量化格式(如 GPTQ)重新量化模型
- 或者使用原始的非量化模型配合 vLLM 的原生量化功能