大模型量化问题相关记录

一、gguf的q4_k_m量化和GPTQ的4bit量化,哪个更好?

GGUF的q4_k_m量化和GPTQ的4-bit量化各有优缺点,具体选择取决于应用场景和需求。

(一)GGUF的q4_k_m量化

GGUF的q4_k_m量化是一种k-quantization方法,即不同层使用不同精度的量化。这种方法通过智能地分配比特数,能够在保持模型性能的同时减少内存使用。q4_k_m量化将Q6_K用于一半的attention.wv和feed_forward.w2张量,否则使用Q4_K,这种混合量化方式在保持模型性能方面表现出色‌12。

(二)GPTQ的4-bit量化

GPTQ的4-bit量化是一种传统的量化方法,每个层都使用相同的4-bit精度进行量化。这种方法实现简单,解压缩方便,通常通过位移、AND和乘法操作实现‌2。虽然GPTQ的4-bit量化在计算效率上可能更高,但在保持模型性能方面可能不如q4_k_m量化‌12。

(三)适用场景和性能对比

  • 性能保持‌:q4_k_m量化通过在不同层使用不同精度的量化,能够在保持模型大部分性能的同时减少内存使用。相比之下,GPTQ的4-bit量化可能在某些情况下会牺牲一些模型性能来换取计算效率‌12。
  • 内存使用‌:q4_k_m量化由于在不同层使用不同精度的量化,可以在保持模型性能的同时减少内存使用。而GPTQ的4-bit量化由于所有层使用相同的精度,可能在内存使用上没有显著优势‌12。

(四)结论

选择GGUF的q4_k_m量化还是GPTQ的4-bit量化取决于具体需求。如果需要在保持模型性能的同时减少内存使用,q4_k_m量化是更好的选择。如果更注重计算效率且可以接受一定的性能损失,GPTQ的4-bit量化可能更合适‌

二、.gguf的模型还能通过vllm进行加载吗?


不能,vLLM 目前不支持直接加载 GGUF 格式的量化模型。GGUF 格式主要是为 llama.cpp 设计的,而 vLLM 支持的量化格式主要包括:

  • AWQ
  • GPTQ
  • SqueezeLLM
  • FP8

对于 GGUF 格式的模型,您需要使用 llama.cpp 或 llama-cpp-python 来加载。以下是使用 llama-cpp-python 加载 GGUF 模型的示例:

from llama_cpp import Llama
import time

# 加载 GGUF 模型
llm = Llama(
    model_path="/path/to/your/model.gguf",
    n_threads=8,           # CPU 线程数
    n_batch=512,          # 批处理大小
    n_gpu_layers=32,      # GPU 加速层数(如果支持)
    verbose=True          # 显示详细日志
)

# 设置生成参数
params = {
    "max_tokens": 4096,
    "temperature": 0.9,
    "top_p": 0.95,
    "stream": False       # 是否使用流式输出
}

# 进行推理
start_time = time.time()
output = llm(
    prompt,               # 您的提示词
    **params
)
end_time = time.time()

# 打印结果和性能指标
print(f"\n生成结果:")
print(output['choices'][0]['text'])
print(f"\n生成时间: {end_time - start_time:.2f} 秒")

如果您需要使用 vLLM 的功能,建议:

  • 使用支持的量化格式(如 GPTQ)重新量化模型
  • 或者使用原始的非量化模型配合 vLLM 的原生量化功能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SuSuStarSmile

共同成长,一起进步,顶峰相见!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值