【数学分析笔记01】平均值不等式证明

引言

本科毕业以后越觉数学的奇妙,想弥补一下数学知识的证明,做点记录,方便后续查阅。

定理1.2.2-平均值不等式

a 1 + a 2 + ⋯ + a n n ≥ a 1 a 2 ⋯ a n n ≥ n / ( 1 a 1 + 1 a 2 + ⋯ + 1 a n ) {\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}}\geq {\sqrt[n]{a_{1}a_{2}\cdots a_{n}}}\geq n{\Big/}\left({\frac{1}{a_{1}}}+{\frac{1}{a_{2}}}+\cdots+{\frac{1}{a_{n}}}\right) na1+a2++anna1a2an n/(a11+a21++an1)
等号当且仅当 a 1 , a 2 , ⋯   , a n a_{1},a_{2},\cdots,a_{n} a1,a2,,an全部相等时成立。这就是说,算术平均值不小于几何平均值,几何平均值不小于调和平均值。
本证明摘自参考资料[1]p22 【第一章 集合与映射 § 2 \S2 §2映射与函数】

【证明】 【证明】 【证明】

先证明左边的不等式
a 1 + a 2 + ⋯ + a n n ≥ a 1 a 2 ⋯ a n n   . {\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}}\geq\sqrt[n]{a_{1}a_{2}\cdots a_{n}}\,. na1+a2++anna1a2an . n = 1 , 2 n=1,2 n=1,2时,不等式显然成立。
n = 2 k ( k ∈ N + ) n=2^k(k∈N^+) n=2k(kN+)时,不等式是 a + b 2 ≥ a b {\frac{a+b}{2}}\ge{\sqrt{a b}} 2a+bab 的直接推论。 当 n ≠ 2 k ( k ∈ N + ) n \neq2^k(k∈N^+) n=2k(kN+)时,取 l ∈ N + l∈N^+ lN+,使得 2 l − 1 < n < 2 l 2^{l-1}\lt n\lt 2^{l} 2l1<n<2l。记
a 1 a 2 ⋯ a n   =   a ˉ \sqrt{a_{1}a_{2}\cdots a_{n}}\,=\,{\bar{a}} a1a2an =aˉ
a 1 , a 2 , ⋯   , a n a_{1},a_{2},\cdots,a_{n} a1,a2,,an后面加上
( 2 l − n ) (2^{l}-n) (2ln) a ˉ {\bar{a}} aˉ,将其扩充成 2 l 2^{l} 2l个正数。对这 2 l 2^{l} 2l正数应用不等式,得到
1 2 l [ a 1 + a 2 + ⋯ + a n + ( 2 l − n ) a ‾ ] z ^ ≥ ( a 1 a 2 ⋯ a n a ‾ 2 l − n ) 1 2 l = a ˉ {\frac{1}{2^l}}{\Big[}a_{1}+a_{2}+\cdots+a_{n}+(2^{l}-n){\overline{{a}}}{\Big]}{\hat{z}}\geq(a_{1}a_{2}{\cdots}a_{n}{\overline{{a}}}^{2^l-n})^{{\frac{1}{2^l}}}={\bar{a}} 2l1[a1+a2++an+(2ln)a]z^(a1a2ana2ln)2l1=aˉ

整理后即有:
a 1 + a 2 + ⋯ + a n n ≥ a 1 a 2 ⋯ a n n \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\ge\sqrt[n]{a_{1}a_{2}\cdots a_{n}} na1+a2++anna1a2an

1 a 1 , 1 a 2 , ⋯   , 1 a n {\frac{1}{a_{1}}},{\frac{1}{a_{2}}},\cdots,{\frac{1}{a_{n}}} a11,a21,,an1使用上面的结论,便得到右边的不等式。

证毕

参考资料

[1]数学分析[M]. 高等教育出版社 , 陈纪修等[编著], 2004

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值