【数学分析笔记03】上确界和下确界

引言

本科毕业以后越觉数学的奇妙,想弥补一下数学知识的证明,做点记录,方便后续查阅。

1.知识铺垫:上确界和下确界

假设 S S S是一个非空数集。

①证明有上界:
S S S为有上界集 ⇔ \Leftrightarrow ∃ M ∈ R \exists M\in \mathbf {R} MR,使得 ∀ x ∈ S \forall x\in S xS,有 x ≤ M x≤M xM
②证明有下界:
S S S为有下界集 ⇔ \Leftrightarrow ∃ m ∈ R \exists m\in \mathbf {R} mR使得 ∀ x ∈ S \forall x\in S xS,有 x ≥ m x\ge m xm
③证明有界:
S S S为有界集 ⇔ \Leftrightarrow ∃ X > 0 \exists X>0 X>0,使得 ∀ x ∈ S \forall x\in S xS,有 ∣ x ∣ ≤ X |x|≤X xX

对于上界集合中最小的数称为上确界,记为
β = s u p   S \beta=\mathrm{sup}\,S β=supS

满足性质(证明是否是上确界的要点)
β \beta β是数集 S S S的上界 : ∀ x ∈ S \forall x\in S xS,有 x ≤ β x≤\beta xβ
②任何小于 β \beta β的数不是数集 S S S的上界: ∀ ε > 0 \forall \varepsilon>0 ε>0 ∃ x ∈ S \exists x\in S xS,使得 x > β − ε x>\beta-\varepsilon x>βε

对于下界集合中最大的数称为下确界,记为
α = i n f   S \alpha=\mathrm{inf}\,S α=infS

满足性质(证明是否是上确界的要点)
α \alpha α是数集 S S S的下界 : ∀ x ∈ S \forall x\in S xS,有 x ≥ α x\ge\alpha xα
②任何大于 α \alpha α的数不是数集 S S S的下界: ∀ ε > 0 \forall \varepsilon>0 ε>0 ∃ x ∈ S \exists x\in S xS,使得 x < α + ε x<\alpha+\varepsilon x<α+ε


定理2,1.1 (确界存在定理——实数系连续性定理)非空有上界的数集必有上确界;非空有下界的数集必有下确界。
(本例摘自参考资料[1]p28 【第二章 第列极限 § 1 \S1 §1实数系的连续性】)

【证明】 【证明】 【证明】

任何一个实数都可以表示为:
x   =   [   x   ] + ( x ) x\ =\ [\,x\,]+(x) x = [x]+(x)
其中 [ x ] [x] [x]表示 x x x的整数部分, ( x ) (x) (x)表示 x x x的非负小数部分。我们将 ( x ) (x) (x)表示成无限小数的形式
( x ) = 0. a 1 a 2 ⋯ a n ⋯ (x)=0.a_1a_2\cdots a_n\cdots (x)=0.a1a2an其中 a 1 , a 2 , ⋯   , a n , ⋯ a_1,a_2,\cdots,a_n,\cdots a1,a2,,an,中的每一个都是数字 0 , 1 , 2 , ⋯   , 9 0,1,2,\cdots,9 0,1,2,,9中的一个。若 ( x ) (x) (x)是有限小数,则在后面接上无限个 0 0 0,这称为实数的无限小数表示。注意无限小数 0. a 1 a 2 ⋯ a n 000 ⋯ ( a b ≠ 0 ) 0.a_1a_2\cdots a_n000\cdots(ab≠0) 0.a1a2an000(ab=0)与无限小数 0. a 1 a 2 ⋯ ( a n − 1 ) 999 ⋯ 0.a_1a_2\cdots(a_n-1)999\cdots 0.a1a2(an1)999是相等的,为了保持表示的唯一性,我们约定在(x)的无限小数表示中不出现后者。这样,任何一个实数集合S就可以由一个确定的无限小数的集合来表示:
{ a 0 + 0. a 1 a 2 ⋯ a n ⋯ ∣ a 0 = [ x ] , 0. a 1 a 2 ⋯ a n ⋯ = ( x ) , x ∈ S ] } \{a_0+0.a_{1}a_{2}\cdots a_{n}\cdots|a_{0}=[x],0.a_{1}a_{2}\cdots a_{n}\cdots=(x),x\in{S}]\} {a0+0.a1a2ana0=[x],0.a1a2an=(x),xS]}设数集 S S S有上界,则可令 S S S中元素的整数部分的最大者为 a 0 a_0 a0( a 0 a_0 a0一定存在,否则的话,S就不可能有上界),并记
S 0 = { x ∣ x ∈ S 并且 [ x ] = α 0 } S_0=\{x|x\in S并且[x]=\alpha_0\} S0={xxS并且[x]=α0}显然 S 0 S_0 S0不是空集,并且 ∀ x ∈ S \forall x\in S xS,只要 x ∈ ‾ S 0 x\overline{\in}S_0 xS0,就有 x < α 0 x<\alpha_0 x<α0。·
再考察数集 S 0 S_0 S0中元素的无限小数表示中第一位小数的数字,令它们中最大的为 α 1 \alpha_1 α1,并记
S 1 = { x ∣ x ∈ S 0 并且 x 的第一位小数为 α 1 } S_1=\{x|x\in S_0并且x的第一位小数为\alpha_1\} S1={xxS0并且x的第一位小数为α1}显然 S 1 S_1 S1不是空集,并且 ∀ x ∈ S \forall x\in S xS,只要 x ∈ ‾ S 1 x\overline{\in}S_1 xS1,就有 x < α 0 + 0. α 1 x<\alpha_0+0.\alpha_1 x<α0+0.α1。·
一般的,考察数集 S n − 1 S_{n-1} Sn1中元素的无限小数表示中第 n n n位小数的数字,令它们中最大的为 α n \alpha_n αn,并记
S n = { x ∣ x ∈ S n − 1 并且 x 的第 n 位小数为 α n } S_n=\{x|x\in S_{n-1}并且x的第n位小数为\alpha_n\} Sn={xxSn1并且x的第n位小数为αn}显然 S n S_n Sn也不是空集,并且 ∀ x ∈ S \forall x\in S xS,只要 x ∈ ‾ S n x\overline{\in}S_n xSn,就有 x < α 0 + 0. α 1 α 2 ⋯ α n x<\alpha_0+0.\alpha_1\alpha_2\cdots\alpha_n x<α0+0.α1α2αn。·
不断地做下去,我们得到一列非空数集 S ⊃ S 0 ⊃ S 1 ⊃ ⋯ ⊃ S n ⊃ ⋯ S\supset S_0\supset S_1 \supset \cdots \supset S_n \supset\cdots SS0S1Sn,和一系列数 α 0 , α 1 , α 2 , ⋯   , α n ⋯   , \alpha_0,\alpha_1,\alpha_2,\cdots,\alpha_n\cdots, α0,α1,α2,,αn,满足
α 0 ∈ Z ; α k ∈ { 0 , 1 , 2 , ⋯   , 9 } , ∀ k ∈ N + \begin{aligned} &\alpha_0\in\mathbf{Z};\\ &\alpha_k\in\{0,1,2,\cdots,9\},\forall k\in \mathbf{N}^+\\ \end{aligned} α0Z;αk{0,1,2,,9},kN+
β = α 0 + 0. α 1 α 2 ⋯ α n ⋯   , \beta=\alpha_0+0.\alpha_1\alpha_2\cdots\alpha_n\cdots, β=α0+0.α1α2αn,下面我们分两步证明 β \beta β就是数集 S S S的上确界。
(1) ∀ x ∈ S \forall x\in S xS,或者存在整数 n 0 ≥ 0 n_0\ge0 n00,使得 x ∈ ‾ S n 0 x\overline{\in}S_{n_0} xSn0;或者对任何整数 n ≥ 0 n\ge0 n0,有 x ∈ S n x\in S_n xSn
x ∈ ‾ S n 0 x\overline{\in}S_{n_0} xSn0,便有
x < α 0 + 0. α 1 α 2 ⋯ α n 0 ≤ β x<\alpha_0+0.\alpha_1\alpha_2\cdots\alpha_{n_0}\le \beta x<α0+0.α1α2αn0β x ∈ S n x\in S_{n} xSn,由 S n S_n Sn的定义并逐个比较 x x x β \beta β的整数部分及每一个小数位上的数字,即知 x = β x=\beta x=β
所以 ∀ x ∈ S \forall x∈S xS,有 x ≤ β x≤\beta xβ,即 β \beta β是数集 S S S的上界。
(2) ∀ ε > 0 \forall \varepsilon>0 ε>0,只要将自然数 n 0 n_0 n0取得充分大,便有
1 1 0 n 0 < ε \frac{1}{10^{n_0}}<\varepsilon 10n01<ε x 0 ∈ S n 0 x_0\in S_{n_0} x0Sn0,则 β \beta β x 0 x_0 x0的整数部分及前 n 0 n_0 n0位小数是相同的,所以
β − x 0 ≤ 1 1 0 n 0 < ε \beta-x_0\le\frac{1}{10^{n_0}}<\varepsilon βx010n01<ε
x 0 > β − ε x_0>\beta-\varepsilon x0>βε即任何小于 β \beta β的数 β − ε \beta-\varepsilon βε不是数集 S S S的上界
同理可以证明非空有下界的数集必有下确界。
证毕


定理2.1.2 非空有界数集的上(下)确界是唯一的。
(本例摘自参考资料[1]p29 【第二章 第列极限 § 2 \S2 §2实数系的连续性】)
【证明】 【证明】 【证明】

书中没给证明,要读者自己完成,参考网上的方法做了整理。

方法1】设数集 S S S的上界为 U U U α \alpha α β \beta β为实数集 S S S的两个上确界,则 α ∈ U , β ∈ U α∈U,β∈U αU,βU ∀ M ∈ U \forall M∈U MU,则必有 α ≤ M α≤M αM, β ≤ M β≤M βM
α < β α<β α<β,取 M = α ∈ U M=α∈U M=αU,则 M < β M<β M<β,与 β ≤ M β≤M βM矛盾。
α > β α>β α>β,取 M = β ∈ U M=β∈U M=βU,则 α > M α>M α>M,与 α ≤ M α≤M αM矛盾。
则必有 α = β α=β α=β,可证上确界相同,为唯一值 。
同理可证非空有界数集的下确界是唯一的。
证毕

方法2】设数集 S S S的上界为 U U U α α α β β β为实数集 S S S的两个上确界,则必有:
∀ x ∈ S ∀x∈S xS,有 x ≤ α x≤α xα x ≤ β x≤β xβ
∀ ε > 0 ∀ε>0 ε>0, ∃ x ∈ S ∃x∈S xS,使得 x > α − ε x>α-ε x>αε x > β − ε x>β-ε x>βε
α < β α<β α<β,当取 ε = β − α > 0 ε=β-α >0 ε=βα>0,则有 x + ε ≤ α + ε = β x+ε≤α+ε=β x+εα+ε=β,即 x ≤ β − ε x≤β-ε xβε,则与②矛盾。
α > β α>β α>β,当取 ε = α − β > 0 ε=α-β >0 ε=αβ>0,则有 x + ε ≤ β + ε = α x+ε≤β+ε=α x+εβ+ε=α,即 x ≤ α − ε x≤α-ε xαε,则与②矛盾。
α = β α=β α=β,可证上确界为为唯一值 ,即非空有界数集的上确界是唯一的。
同理可证非空有界数集的下确界是唯一的。
证毕


例2,1.3 T = ∣ x ∣   x  ⁣ ∈  ⁣ Q 并且 x  ⁣ > 0 , x 2  ⁣ <  ⁣ 2 } T=|x|\,x\!\in\!\mathbf{Q}并且 x\!\gt 0,x^{2}\!\lt \!2\} T=xxQ并且x>0,x2<2},证明 T T T Q \mathbf{Q} Q中没有上确界。
(本例摘自参考资料[1]p29 【第二章 第列极限 § 2 \S2 §2实数系的连续性】)

【证明】 【证明】 【证明】

用反证法
假设 T T T Q \mathbf{Q} Q内有上确界,记 s u p   T = n m ( m , n ∈ N + 且 m , n 互质 ) \mathrm{sup}\,T=\frac{n}{m}(m,n\in N^+且m,n互质) supT=mn(m,nN+m,n互质),则显然有
1 < ( n m ) 2 < 3 1\lt {\bigg(}{\frac{n}{m}}{\bigg)}^{2}\lt 3 1<(mn)2<3由于有理数的平方不可能等于2,于是只有下述两种可能:
(1) 1 < ( n m ) 2 < 2 1\lt {\bigg(}{\frac{n}{m}}{\bigg)}^{2}\lt 2 1<(mn)2<2
2 − n 2 m 2 = t 2-{\frac{n^{2}}{m^{2}}}=t 2m2n2=t,则 0 < t < 1 0\lt t\lt 1 0<t<1,令 r = n 6 m t r=\frac{n}{6m}t r=6mnt,显然 n m + r > 0 \frac{n}{m}+r\gt 0 mn+r>0 n m + r ∈ Q \frac{n}{m}+r\in \mathbf{Q} mn+rQ
由于 r 2 = n 2 36 m 2 t 2 < 1 18 t r^2=\frac{n^2}{36m^2}t^2\lt \frac{1}{18}t r2=36m2n2t2<181t,以及 2 n m r = n 2 3 m 2 t < 2 3 t \frac{2n}{m}r=\frac{n^2}{3m^2}t\lt \frac{2}{3}t m2nr=3m2n2t<32t,可以得到
( n m + r ) 2 − 2   =   r 2 + 2 n m r   −   t   <   0 \left({\frac{n}{m}}+ r\right)^{2}-2\,=\,r^{2}+{\frac{2n}{m}}r\,-\,t\,\lt \,0 (mn+r)22=r2+m2nrt<0
这说明, n m + r ∈ T \frac{n}{m}+r\in T mn+rT,与 n m \frac{n}{m} mn T T T的上确界矛盾
(2) 2 < ( n m ) 2 < 3 2\lt {\bigg(}{\frac{n}{m}}{\bigg)}^{2}\lt 3 2<(mn)2<3
n 2 m 2 − 2 = t {\frac{n^{2}}{m^{2}}}-2=t m2n22=t,则 0 < t < 1 0\lt t\lt 1 0<t<1,令 r = n 6 m t r=\frac{n}{6m}t r=6mnt,显然 n m − r > 0 \frac{n}{m}-r\gt 0 mnr>0 n m − r ∈ Q \frac{n}{m}-r\in \mathbf{Q} mnrQ
由于 2 n m r = n 2 3 m 2 t < t \frac{2n}{m}r=\frac{n^2}{3m^2}t\lt t m2nr=3m2n2t<t,可以得到
( n m − r ) 2 − 2   =   r 2 − 2 n m r   +   t   >   0 \left({\frac{n}{m}}- r\right)^{2}-2\,=\,r^{2}-{\frac{2n}{m}}r\,+\,t\,\gt \,0 (mnr)22=r2m2nr+t>0这说明, n m − r \frac{n}{m}-r mnr也是 T T T的上界,与 n m \frac{n}{m} mn T T T的上确界矛盾
由此得到结论: T T T Q \mathbf{Q} Q中没有上确界
证毕

参考资料

[1]数学分析[M]. 高等教育出版社 , 陈纪修等[编著], 2004

  • 5
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值