【数学分析笔记06】数列极限的四则运算

引言

本科毕业以后越觉数学的奇妙,想弥补一下数学知识的证明,做点记录,方便后续查阅。

1.知识铺垫:数列极限的四则运算


定理2,2.5 lim ⁡ n → ∞ x n = a \operatorname*{lim}_{n\rightarrow\infty}x_{n}=a limnxn=a lim ⁡ n → ∞ y n = b \operatorname*{lim}_{n\rightarrow\infty}y_{n}=b limnyn=b,则
(I) lim ⁡ n → ∞ ( α x n + β y n ) = α a + β b \operatorname*{lim}_{n\rightarrow\infty}(\alpha x_{n}+\beta y_n)=\alpha a+\beta b limn(αxn+βyn)=αa+βb( α \alpha α β \beta β是常数)
(II) lim ⁡ n → ∞ ( x n y n ) = a b \operatorname*{lim}_{n\rightarrow\infty}(x_{n}y_n)=ab limn(xnyn)=ab
(III) lim ⁡ n → ∞ ( x n / y n ) = a / b \operatorname*{lim}_{n\rightarrow\infty}(x_{n}/y_n)=a/b limn(xn/yn)=a/b( b ≠ 0 b\neq 0 b=0)
(本例摘自参考资料[1]p28 【第二章 第列极限 § 2 \S2 §2实数系的连续性】)

【证明】 【证明】 【证明】

由于 lim ⁡ n → ∞ x n = a \operatorname*{lim}_{n\rightarrow\infty}x_{n}=a limnxn=a,可知 ∃ X \exist X X,使得 ∣ x n ∣ ≤ X |x_n|\le X xnX, ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ N 1 \exist N_1 N1, n > N 1 n> N_1 n>N1: ∣ x n − a ∣ < ε |x_n-a|<\varepsilon xna<ε
由于 lim ⁡ n → ∞ y n = b \operatorname*{lim}_{n\rightarrow\infty}y_{n}=b limnyn=b ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ N 2 \exist N_2 N2, n > N 2 n> N_2 n>N2: ∣ y n − b ∣ < ε |y_n-b|<\varepsilon ynb<ε
N = max ⁡ { N 1 , N 2 } , ∀ n > N N=\max\{N_1,N_2\}, \forall n>N N=max{N1,N2},n>N
∣ ( α x n + β y n ) − ( α a + β b ) ∣ ≤ ∣ α ∣ ⋅ ∣ x n − a ∣ + ∣ β ∣ ⋅ ∣ y n − b ∣ < ( ∣ α ∣ + ∣ β ∣ ) ε |(\alpha x_{n}+\beta y_n)-(\alpha a+\beta b)|\le|\alpha|\cdot|x_n-a|+|\beta|\cdot|y_n-b|<(|\alpha|+|\beta|)\varepsilon (αxn+βyn)(αa+βb)αxna+βynb<(α+β)ε(I)证毕

∣ x n y n − a b ∣ = ∣ x n ( y n − b ) + b ( x n − a ) ∣ ≤ ∣ x n ∣ ⋅ ∣ y n − b ∣ + ∣ b ∣ ⋅ ∣ x n − a ∣ < ( X + ∣ b ∣ ) ε | x_{n}y_n-ab|=|x_{n}(y_n-b)+b(x_n-a)|\le|x_n|\cdot|y_n-b|+|b|\cdot|x_n-a|<(X+|b|)\varepsilon xnynab=xn(ynb)+b(xna)xnynb+bxna<(X+b)ε(II)证毕

利用定理2.2.3的推论 ∃ N 0 \exist N_0 N0, n > N 0 n>N_0 n>N0,成立 ∣ y n ∣ > ∣ b ∣ 2 |y_n|>\frac{|b|}{2} yn>2b
N = max ⁡ { N 0 , N 1 , N 2 } , ∀ n > N N=\max\{N_0,N_1,N_2\}, \forall n>N N=max{N0,N1,N2},n>N
∣ x n y n − a b ∣ = ∣ b ( x n − a ) − a ( y n − b ) y n b ∣ < ∣ 2 ( ∣ a ∣ + ∣ b ∣ ) ε b 2 ∣ \left|\frac{x_n}{y_n}-\frac{a}{b}\right|=\left|\frac{b(x_n-a)-a(y_n-b)}{y_nb}\right|<\left|\frac{2(|a|+|b|)\varepsilon}{b^2}\right| ynxnba = ynbb(xna)a(ynb) < b22(a+b)ε (III)证毕

参考资料

[1]数学分析[M]. 高等教育出版社 , 陈纪修等[编著], 2004

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
栈是一种数据结构,它可以存储一组元素,并支持在一端插入和删除元素。在四则运算中,可以使用栈来实现表达式的求解。 表达式求解的基本思路是,将中缀表达式转换为后缀表达式,然后使用栈对后缀表达式进行求解。 中缀表达式是人类常用的表达式格式,例如 1 + 2 * 3。后缀表达式是一种更适合计算机处理的表达式格式,也称为逆波兰表达式,例如 1 2 3 * +。 中缀表达式转换为后缀表达式的过程可以使用栈来实现。具体步骤如下: 1. 新建一个空栈和一个空列表。 2. 从左到右扫描中缀表达式的每个元素。如果当前元素是数字,将其加入到列表中。 3. 如果当前元素是运算符,则将其弹出栈,直到栈顶元素的优先级低于或等于当前元素,并将弹出的元素加入到列表中。然后将当前元素入栈。 4. 如果当前元素是左括号,直接将其入栈。 5. 如果当前元素是右括号,则将栈顶元素弹出并加入到列表中,直到遇到左括号。左括号不加入列表,直接弹出。 6. 扫描完中缀表达式后,将栈中剩余的元素依次弹出并加入到列表中。 将中缀表达式转换为后缀表达式后,可以使用栈对后缀表达式进行求解。具体步骤如下: 1. 新建一个空栈。 2. 从左到右扫描后缀表达式的每个元素。如果当前元素是数字,将其入栈。 3. 如果当前元素是运算符,则弹出栈顶的两个元素,并根据当前元素进行运算。将运算结果入栈。 4. 扫描完后缀表达式后,栈中剩余的元素即为表达式的最终结果。 使用栈实现四则运算还需要注意一些细节,例如运算符的优先级、括号的处理等。但基本思路就是如上所述。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值