Matlab绘制隐函数总结-二维和三维

1.二维隐函数

二维隐函数满足 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0,这里无法得到 y = f ( x ) y=f(x) y=f(x)的形式。不能通过普通函数绘制。

我们要关注的是使用fplot函数和fimplicit函数。
在这里插入图片描述

第1种情况:基本隐函数

基本的隐函数形式形如:

x 2 + y 2 + 2 x = 2 ( x 2 + y 2 ) 1 2 x^{2}+y^{2}+2 x=2\left(x^{2}\right.\left.+y^{2}\right)^{\frac{1}{2}} x2+y2+2x=2(x2+y2)21

原来有个ezplot函数的,但是现在Matlab不推荐使用了,可能要慢慢淘汰掉了。老版的写法是

ezplot('x^2+y^2+2*x=2*sqrt(x^2+y^2)') 

或者

syms x y 
ezplot(x^2+y^2+2*x-2*sqrt(x^2+y^2)) 

(后面我们也不再谈ezplot函数)

下面是官方推荐的写法: 使用fplot函数 感谢网友mathacg的指出:fplot不再支持字符向量输入需改用函数句柄。绘制的是单变量的曲线,所以用fplot来绘制二维隐函数曲线不可行了。在这里插入图片描述

使用fimplicit函数

注意和fplot函数不同,Matlab官方提示:为了获得最佳性能和避免产生警告消息,请使用按元素运算符。例如,使用 x.*y 而不是 x*y

fimplicit( x.^2+y.^2+2.*x-2.*sqrt(x.^2+y.^2))

或者

fimplicit(@(x,y) x.^2+y.^2+2.*x-2.*sqrt(x.^2+y.^2))

总结:一般的隐函数可以使用fimplicit函数绘制。

第2种情况:隐函数带变量

形如:

x 2 + y 2 + a x = a ( x 2 + y 2 ) 1 2 x^{2}+y^{2}+a x=a\left(x^{2}+y^{2}\right)^{\frac{1}{2}} x2+y2+ax=a(x2+y2)21

根据实际需要可将 a a a事先具体赋值, 但使用中应注意,绘图语句不能简单采用前面基本格式的 形式 ,不能写作,会报错

a = 2; 
fplot('x^2+y^2+a*x-a*sqrt(x^2+y^2)');

因为函数包括单引号时,相当于是符号表达式,变量a的值作为一个参数,不能传进函数,导致fplot()不能正常绘图。

使用fimplicit函数

fplot函数测试了不行,使用fimplicit函数下面的代码是可以的。

a=2;
syms x y
fimplicit(x.^2+y.^2+ a.*x-a.*sqrt(x.^2+y.^2))

总结:带有未知参数的隐函数使用fimplicit函数绘制

第3种情况:带有多个变量的隐函数组的绘图

形如:

f ( x , y ) = x + y 2 = a , g ( x , y ) = x 2 − y = b f(x, y)=x+y^2=a,\quad g(x, y)=x^2-y=b f(x,y)=x+y2=a,g(x,y)=x2y=b

不妨令:

a = 3 , b = − 3 a=3,b=-3 a=3,b=3

使用fimplicit函数

因为还是带有未知参数的隐函数,我们还是用使用fimplicit函数绘制。

a=3;b=-3;
syms x y
f=x+y^2-a;
g=x^2-y-b;
fimplicit(f);
hold on;
fimplicit(g)
title('x+y^2-a=0 x^2-y-b=0 a=3 b=-3')

在这里插入图片描述

总结:带有多个变量的隐函数组使用fimplicit函数绘制,加上hold on命令

2.三维隐函数

三维隐函数满足 f ( x , y , z ) = 0 f(x,y,z)=0 f(x,y,z)=0,这里无法得到 z = f ( x , y ) z=f(x,y) z=f(x,y)的形式。不能通过普通函数绘制。

我们要关注的是使用等面值计算函数isosurface和面元渲染函数patch分布实现三维隐函数曲面的绘制方法。

我们使用isosurface的调用方式是

[f,v] = isosurface(X,Y,Z,V,isovalue)

官方的解释是该语句返回由isovalue指定的某个等值面的表面(Faces)和顶点(Vertices)数据,并存放在单独的数组f、v中。我们绘制的是 v = f ( x , y , z ) = 0 v=f(x,y,z)=0 v=f(x,y,z)=0的三维图形,则isovalue=0

patch函数是面元渲染函数,对曲面进行修饰,相关的调用方式是:patch(X,Y,Z,C)

patch(X,Y,Z,C)

它以三维坐标(X,Y,Z)为顶点,构造三维曲面,c是R G B颜色向量。另一个相关的调用方式是:

patch('Faces',F,'Vertices',V)

它通过包含Faces、Vertices两个的数组F、V来构造三维曲面,F和V可以由等值面函数isosurface计算而得。

对于三元显函数 v = f ( x , y , z ) v=f(x,y,z) v=f(x,y,z) 来说,当 v = 0 v=0 v=0时的等值面就是 z = g ( x , y ) z=g(x,y) z=g(x,y)的三维曲面。isosurface函数可以计算 v = 0 v=0 v=0的等值面,返回结果包括表面和顶点数据,并存放于数组 f f f v v v中,再输入给patch函数,能构造三维曲面,还可以根据需要设置颜色、亮度、三维视角等。画图的步骤可以归纳为:

(1)用meshgrid函数产生网格点,同时可确定坐标范围。
(2)引用隐函数表达式计算格点函数值val。
(3)调用[f,v]=isosurface(x,y,z,val,0)计算隐函数等值面并返回到f、v。
(4)调用patch(‘Faces’,f,‘Vertices’,v,‘facecolor’,‘interp’,‘EdgeColor’,‘k’)对曲面修饰。

[x,y,z]=meshgrid(-1.5:0.1:1.5,-1.5:0.1:1.5,-1.5:0.1:1.5);
v=(x.^2+(9/4)*y.^2+z.^2-1).^3-x.^2.*z.^3-(9/80)*y.^2.*z.^3;
[f,v]=isosurface(x,y,z,v,0);
p=patch('Faces',f,'Vertices',v,'CData',v(:,3),'facecolor','interp',...
    'EdgeColor','k');
view(3); grid on;

来看下效果!

在这里插入图片描述

MATLAB绘制3D隐函数曲面的方法总结-MarchingCubes.zip 本帖最后由 winner245 于 2013-10-28 00:45 编辑 背景介绍 Matlab提供了一系列绘图函数,常见的包括绘制2D曲线的plot函数、绘制2D隐函数曲线的ezplot函数、绘制3D曲面的mesh和surf函数、绘制3D显函数曲面的ezmesh和ezsurf函数。值得注意的是,ez系列的绘图函数里只有ezplot是绘制隐函数曲线的,ezmesh和ezsurf都是画显函数曲面的(不要被ez的名字误解了)。遗憾的是,matlab里并没有提供直接绘制3D隐函数曲面的函数。本帖的目的就是归纳总结几种方便易用的绘制隐函数曲面的办法。 问题描述 如何绘制3元方程f = 0确立的隐函数曲面z = g?其中,方程f = 0无法求解z关于x、y的表达式,即g的显式表达式无法获取。 准备工作——基础函数介绍 为了解决上述问题,我们需要先对几个重要的图形函数isosurface、patch、isonormals取得初步的了解,如果您已经对这三个函数很熟悉,可以直接跳过这一步。 l.  isosurface 等值面函数 调用格式:fv = isosurface作用:返回某个等值面(由isovalue指定)的表面(faces)和顶点(vertices)数据,存放在结构体fv中(fv由vertices、faces两个域构成)。如果是画隐函数 v = f = 0 的三维图形,那么等值面的数值为isovalue = 0。 2.  patch函数 调用格式:patch 以平面坐标为顶点,构造平面多边形,C是RGB颜色向量                    patch以空间3-D坐标为顶点,构造空间3D曲面,C是RGB颜色向量                    patch 通过包含vertices、faces两个域的结构体fv来构造3D曲面,fv可以直接由等值面函数isosurface得到 例如:patch) 3.  isonormals等值面法线函数 调用格式:isonormals实现功能:计算等值面V的顶点法线,将patch曲面p的法线设置为计算得到的法线(p是patch返回得到的句柄)。如果不设置法线的话,得到曲面在过渡地带看起来可能不是很光滑 有了上述三个函数后,我们已经具备间接绘制3D隐函数曲面的能力了。下面以方程 f = x.*y.*z.*log-10 = 0为例,讲解如何画3D隐函数曲面。 解决办法一:isosurface patch isonormals实现原理:先定义3元显函数v =f, 则 v = 0 定义的等值面就是z = g的3D曲面。利用isosurface函数获取v= 0 的等值面,将得到的等值面直接输入给patch函数,得出patch句柄p,并画出patch曲面的平面视角图形。对p用isonormals函数设置曲面顶点数据的法线,最后设置颜色、亮度、3D视角,得到3D曲面。 代码如下: f = @ x.*y.*z.*log-10;      % 函数表达式 [x,y,z] = meshgrid;       % 画图范围 v = f; h = patch); isonormals               set; xlabel;ylabel;zlabel; alpha    grid on; view; axis equal; camlight; lighting gouraud 复制代码 代码说明: alpha函数用于设置patch曲面的透明度(可以是0~1任意数值),1 表示不透明,0 表示最大透明度。如果想设置透明度为0.7,可以修改alpha为alpha。 使用此代码解决特定问题时,只需将第1行的函数表达式替换为特定问题的函数表达式,将第2行数据(x、y、z)范围换成合适的范围,后续代码无需任何变动。 得到图形: 1.png 解决办法二:Mupad Mupad符号引擎里提供了现成的三维隐函数画图函数:Implicit3d 在matlab里开启Mupad的方法是:在commandwindow 里输入mupad 来启动一个notebook。在启动的notebook里再输入如下代码: plot-10, x = -10..10, y = -10..10, z = -10..10), Scaling = Constrained)复制代码 回车后得到如下图形: 1.png 解决办法三:第三方工具包ezimplot3 在matlab central 的 file exchange 上有一个非常优秀的绘制3维隐函数的绘图函数,叫ezimplot3。感兴趣的可以在如下链接下载:http://www.mathworks.com/matlabcentral/fileexchange/23623-ezimplot3-implicit-3d-functions-plotter也可以直接从本帖下载: ezimplot3.zip ezimplot3一共有三种参数调用方式: ezimplot3 画函数f= 0 在-2*pi< X < 2* pi, -2* pi < Y < 2* pi, -2* pi < Z < 2* pi上的图形ezimplot3画函数f= 0 在A< X < B, A < Y < B, A < Z < B上的图形ezimplot3画函数f= 0 在XMIN< X < XMAX, YMIN < Y < YMAX, ZMIN < Z < ZMAX上的图形 ezimplot3使用方法:解压ezimplot3.zip,将解压得到的ezimplot3.m 添加到matlab当前搜索路径后就可以使用了。然后,可以直接在command window 输入代码:f = @ x*y*z*log-10; ezimplot3;  % [-10, 10] 表示图形范围x、y、z都在区间[-10, 10] 复制代码 即得到如下图形: 1.png 若干说明: ezimplot3和方法一本质上完全相同。即ezimplot3实际上也是基于isosurface patch isonormals的实现ezimplot3与方法一的图形视觉效果相同,唯一的区别是,ezimplot3的使用了0.7的透明度:alphaezimplot3在方法一基础上增加了一些外包功能,如:允许函数句柄f是非向量化的函数(即函数定义无需.*  ./  .^),这在ezimplot3内部会自动调用vectorize实现函数向量化。另外,ezimplot3可以在调用的时候方便的设定坐标范围。 常见问题和解决办法: 常见问题:很多人在使用以上方法后,经常出现的问题是代码没有任何错误,程序可以运行,就是出来的图形只有一个空坐标轴,看不到图形。 问题分析:出现这种问题的原因是图形的显示区域没设对。比如,我们上述三种方法都是在x为-10到10的范围内,如果你设的范围内本身就没有图形,那当然就看不到图形了。解决办法:把图形显示范围重新设置对即可,如果不知道图形的大致范围,就手工多改几次,直到看到图形为止 方法一,图形范围是在第2句的meshgrid函数决定的,meshgrid里给出的x、y、z范围就是最终画图范围,修改meshgrid语句即可。方法二(Mupad),x =-10..10, y = -10..10, z = -10..10是表示显示范围,修改这里即可。方法三,用ezimplot3 ezimplot3两种方式控制图形显示范围。 后记:slice切片函数 matlab还提供一种画切片图形的函数slice,slice做出的图是在切片上用颜色表示v的值。有时,我们画切片图形也有助于我们理解一个4维图形。以  v= f = x*y*z*exp)  为例,假设我们希望看 v =f 在 x =0, y = 1, z = 1 这些平面切片的图形,我们可以用以下代码: [x,y,z] = meshgrid); v = x.*y.*z.*exp); xslice = 0; yslice = 1; zslice = 1; slice xlabel; ylabel; zlabel; colormap hsv 复制代码 得到图形为: 1.png 经常听有人说想画 “4D图形”,前3维数据[x,y,z]表示空间位置,第4维数据v表示颜色(温度等),这类图形可以方便地通过slice切片实现: slice,这里就是在指定的切片上在空间坐标[x,y,z]处,用v值指定颜色画图。关于这类 “4D图形”的画法的一个典型例子:https://www.ilovematlab.cn/thread-265517-1-1.html 另外,我在 23 楼提供了一个slice 函数应用的生动例子:slice 3D 动画图形。感兴趣的朋友可以看看 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 欢迎大家踊跃讨论,给出更多更好的办法
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值