材料力学-剪力和弯矩方向规定及关系

剪力和弯矩的方向规定方法

在这里插入图片描述
对水平梁的某一指定截面来说,

  • 剪力:在它左侧的向上外力,或右侧的向下外力,将产生正的剪力;反之,即产生负的剪力。

自己的记法(可以不按我的来):取左侧来算剪力向下为正,取右侧来算剪力为上为正,如果取一段来看,剪力为正,剪力这时候应该是顺时针方向。

  • 弯矩,则无论在指定截面的左侧或右侧,向上的外力产生正的弯矩,向下的外力产生负的弯矩。

正负方向怎么用?我们要知道截面的剪力等于所选对象上的所有力的代数和,如果截面是在右边,左边的力向上为正,向下为负;如果截面是在左边,右边的力向上为负,向下为正。

同理的,对于弯矩,截面的弯矩等于所选对象上所有力矩的代数和,如果截面在右边,左边的力矩顺时针为正,逆时针为负。如果截面是在左边,右边的力矩逆时针为正,顺时针为负。

剪力和弯矩间的关系

在这里插入图片描述
力平衡和对C点的力矩平衡有:

Q ( x ) − [ Q ( x ) + d Q ( x ) ] + q ( x ) d x = 0 − M ( x ) + [ M ( x ) + d M ( x ) ] − Q ( x ) d x − q ( x ) d x ⋅ d x 2 = 0 \begin{aligned} &Q(x)-[Q(x)+\mathrm{d} Q(x)]+q(x) \mathrm{d} x=0 \\ &-M(x)+[M(x)+\mathrm{d} M(x)]-Q(x) \mathrm{d} x-q(x) \mathrm{d} x \cdot \frac{\mathrm{d} x}{2}=0 \end{aligned} Q(x)[Q(x)+dQ(x)]+q(x)dx=0M(x)+[M(x)+dM(x)]Q(x)dxq(x)dx2dx=0

我们得到:

d Q ( x ) d x = q ( x ) d M ( x ) d x = Q ( x ) d 2 M ( x ) d x 2 = d Q ( x ) d x = q ( x ) \begin{aligned} \frac{\mathrm{d} Q(x)}{\mathrm{d} x}&=q(x) \\ \frac{\mathrm{d} M(x)}{\mathrm{d} x}&=Q(x)\\ \frac{\mathrm{d}^{2} M(x)}{\mathrm{d} x^{2}}&=\frac{\mathrm{d} Q(x)}{\mathrm{d} x}=q(x) \end{aligned} dxdQ(x)dxdM(x)dx2d2M(x)=q(x)=Q(x)=dxdQ(x)=q(x)

看到一个更加形象的图

在这里插入图片描述

在这里插入图片描述

内容概要:本文档是一份计算机软考初级程序员的经典面试题汇编,涵盖了面向对象编程的四大特征(抽象、继承、封装、多态),并详细探讨了Java编程中的诸多核心概念,如基本数据类型与引用类型的区别、StringStringBuffer的差异、异常处理机制、Servlet的生命周期及其与CGI的区别、集合框架中ArrayList、VectorLinkedList的特性对比、EJB的实现技术及其不同Bean类型的区别、CollectionCollections的差异、final、finallyfinalize的作用、线程同步与异步的区别、抽象类接口的区别、垃圾回收机制、JSPServlet的工作原理及其异同等。此外,还介绍了WebLogic服务器的相关配置、EJB的激活机制、J2EE平台的构成服务、常见的设计模式(如工厂模式)、Web容器EJB容器的功能、JNDI、JMS、JTA等J2EE核心技术的概念。 适合人群:正在备考计算机软考初级程序员的考生,或希望加深对Java编程及Web开发理解的初、中级开发人员。 使用场景及目标:①帮助考生系统复习Java编程语言的基础知识高级特性;②为实际项目开发提供理论指导,提升编程技能;③为面试准备提供参考,帮助求职者更好地应对技术面试。 其他说明:文档不仅涉及Java编程语言的核心知识点,还包括了Web开发、企业级应用开发等方面的技术要点,旨在全面提高读者的专业素养技术水平。文档内容详实,适合有一定编程基础的学习者深入学习研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值