关于概率图的一点理解

什么是概率图,顾名思义,肯定是和概率有关的,它存在的基础是是如何快速利用计算机从看似错综复杂的事物中找出我们想要的答案,而且得保证答案是正确的,那么怎么做呢。如何让一个问题、一堆杂乱的数,以可视化的、有序的方式表示呢?而且还得保证计算机能读懂,能对其进行操作、挖掘内容。这大概就是发掘它的初衷吧。详述起来它可以分为三种表示形式,一种叫贝叶斯网络,一种叫马尔科夫网络,还有就是他俩的混合形式。整体都是由因子和边构成,因子既是分解出的构成事件的因素,可以有多个取值,并已知它们的先验分布或者是条件分布,即因子无父节点时,其分布就是先验分布,如有父节点,图里给出的就是给定父节点组合下的条件分布。

贝叶斯网,即是有向无环图,即连接两个点(因子)的线是有方向的,且因子间构成的闭环不能指向自己,这个就叫是贝叶斯网络,箭头代表了因果关系,由父节点能导致子节点,父节点是因,子节点是果。所以整个图利用贝叶斯公式又可表示成所有因子的条件概率的积。

马尔科夫网:有时因子间是互相影响的,因果关系是互相存在的,那么简单定义方向就不合适了,所以连接因子的线条是无向的。

混合模型:即模型是由贝叶斯网及马尔科夫网共同构成。

至于模型的训练,如何从一堆杂乱的数据训练处有效的具有代表性的模型呢?训练模型的过程到底会有哪些问题呢?有时我们用的数据可能里面会有捣乱的数据,即不是可用的,应该除去,后者构成模型的数据量不够,不具代表性,因此用此数据导出的模型可能是正确的,但不是对我们的所求内容的真实反映,所以用它求出的解很可能就是不对的,不能加以利用,也就达不到指导实践的意义,所以训练数据是一部分,验证训练出的模型可能也是一个重要的内容!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值