财务报表分析:Earnings Per Share

EPS,全称Earnings Per Share,意为每股收益或每股盈利。它是指税后利润与股本总数的比率,是上市公司股东每持有一股所能享有的企业净利润或需承担的企业净亏损。每股收益通常被用来反映企业的经营成果,衡量普通股的获利水平及投资风险,是投资者等信息使用者据以评价企业盈利能力、预测企业成长潜力、进而做出相关经济决策的重要的财务指标之一。
EPS的计算公式为:每股收益=(税后利润-优先股股利)/发行在外的普通股平均股数。
每股收益越高,说明每股获利能力越强,投资者的回报越高;反之则越差。在分析时,可以进行公司间的比较,以评价该公司相对的盈利能力;可以进行不同时期的比较,了解该公司盈利能力的变化趋势;还可以进行经营实绩和盈利预测的比较,掌握该公司的管理能力。
然而,投资者在使用每股收益指标时,还需要注意以下几点:
每股收益不反映股票所含有的风险。例如,同一公司股票的每一股,在不同时期,其税后利润不尽相同,若公司税后利润出现负增长,每股收益下降,反映该公司财务状况可能正在恶化。因此,投资者在使用该指标时,需要结合其他财务指标和公司经营状况进行综合分析。
股票是一个“份额”概念,是所有权的一部分,而每股收益中的收益概念,既指税后利润,又指股份的利润分配。因此,每股收益并不能完全反映股东的实际收益情况。
每股收益指标还受到公司股本变动的影响。在送红股、公积金转增股本、配股等情况下,每股收益需要进行调整。因此,投资者在比较不同公司的每股收益时,需要注意这些因素的影响。

 

内容概要:本文档《gee scripts.txt》记录了利用Google Earth Engine(GEE)进行遥感影像处理与分类的脚本流程。首先,对指定区域内的Landsat 5卫星图像进行了数据筛选,排除云量超过7%的影像,并应用缩放因子调整光学波段和热波段的数值。接着,基于样本数据集训练随机森林分类器,用于区分植被、水体、建筑、土壤、拜耳作物、岩石和草地等地物类型。最后,将训练好的模型应用于处理后的Landsat 5影像,生成分类结果图层,并计算混淆矩阵以评估模型准确性,同时将分类结果导出至Google Drive。 适合人群:从事地理信息系统(GIS)、遥感科学或环境监测领域的研究人员和技术人员,特别是那些希望深入了解GEE平台及其在地物分类中的应用的人士。 使用场景及目标:①从Landsat卫星获取特定时间段内的高质量影像数据;②通过预处理步骤提高影像质量,确保后续分析的有效性;③构建并训练机器学习模型以实现地物自动分类;④评估分类模型性能,保证结果可靠性;⑤将最终成果高效存储于云端平台以便进一步研究或共享。 阅读建议:由于涉及较多专业术语和技术细节,在阅读时建议先熟悉GEE平台的基本操作以及相关遥感知识,重点关注数据处理流程和分类算法的选择依据。此外,对于代码部分,可以尝试在自己的GEE环境中运行,以便更好地理解每个步骤的具体作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值