FBank与MFCC

预处理

分帧

我们需要将不定长的音频切分成固定长度的小段,这一步称为分帧。一般取10-30ms为一帧,为了避免窗边界对信号的遗漏,因此对帧做偏移时候,要有帧迭(帧与帧之间需要重叠一部分)。 一般取帧长的一半作为帧移,也就是每次位移一帧的二分之一后再取下一帧,这样可以避免帧与帧之间的特性变化太大。通常的选择是25ms每帧,帧迭为10ms。接下来的操作是对单帧进行的。

要分帧是因为语音信号是快速变化的,而傅里叶变换适用于分析平稳的信号。在语音识别中,一般把帧长取为10~30ms,这样一帧内既有足够多的周期,又不会变化太剧烈。每帧信号通常要与一个平滑的窗函数相乘,让帧两端平滑地衰减到零,这样可以降低傅里叶变换后旁瓣的强度,取得更高质量的频谱。帧和帧之间的时间差常常取为10ms,这样帧与帧之间会有重叠,否则,由于帧与帧连接处的信号会因为加窗而被弱化,这部分的信息就丢失了。傅里叶变换是逐帧进行的,为的是取得每一帧的频谱。一般只保留幅度谱,丢弃相位谱。

预增强

预增强以帧为单位进行,目的在于加强高频。数学公式如下:

k是预增强系数,范围为[0, 1),常用0.97,N是每一帧的长度,从公式可以看出每一帧的第一个数需要特殊处理。

加窗

语音在长范围内是不停变动的,没有固定的特性无法做处理,所以将每一帧代入窗函数,窗外的值设定为0,其目的是消除各个帧两端可能会造成的信号不连续性。常用的窗函数有方窗、汉明窗等,根据窗函数的频域特性,常采用汉明窗,其对应的窗函数如下:

加窗过程其实就是将data[0:n-1]与w[0:n-1]对应相乘。

注意:预增强和加窗同时使用时,要首先进行预增强

添加随机噪声

有时候我们需要进行数据增强,会手动合成一些音频。某些人工合成(使用软件)的音频可能会造成一些数字错误,诸如underflow或者overflow。 这种情况下,通过添加随机噪声可以解决这一类问题。公式如下:

q用于控制添加噪声的强度,rand() 产生[-1.0, 1.0)的随机数。

注意:Kaldi中是在分帧之后的下一步添加随机噪声

fbank

人耳对声音频谱的响应是非线性的,经验表明:如果我们能够设计一种前端处理算法,以类似于人耳的方式对音频进行处理,可以提高语音识别的性能。FilterBank就是这样的一种算法。FBank特征提取要在预处理之后进行,这时语音已经分帧,我们需要逐帧提取FBank特征。

快速傅里叶变换(fft)

我们分帧之后得到的仍然是时域信号,为了提取fbank特征,首先需要将时域信号转换为频域信号。傅里叶变换可以将信号从时域转到频域。傅里叶变换可以分为连续傅里叶变换和离散傅里叶变换,因为我们用的是数字音频(而非模拟音频),所以我们用到的是离散傅里叶变换。数学公式如下:

公式比较难以理解,可以想象一下傅里叶级数,一个函数可以用其他基本函数组合逼近。从公式可以看出,傅里叶变化的计算复杂度较高,因此我们通常使用的是快速傅里叶变换(fft)。

信号频率 : 组合产生复杂信号的简单信号的频率,通常简单信号平率范围很广

采样频率 : 模拟到数字的转换过程中,需要对模拟信号进行采样,每秒内的采样点数量就是采样频率

Nyquist定理(奈奎斯特): 如果想要从数字信号无损转到模拟信号,我们需要以最高信号频率的2倍的采样频率进行采样。通常人的声音的频率大概在3kHz~4kHz ,因此语音识别通常使用8k或者16k的wav提取特征。16kHz采样率的音频,傅里叶变换之后的频率范围为0-8KHz。

计算能量谱

傅里叶变换完成后,我们得到的是频域信号,每个频带范围的能量大小不一,不同音素的能量谱不一样。有两种计算方法:

magnitude = sqrt(real*real + image*image)

power = real*real + image*image

注意:htk同时支持这两种方式,kaldi只支持第二种

Mel滤波

Mel滤波的过程如下图:

图中m表示不同频率处的能量,三角窗口表示滤波窗口。三角窗口可以覆盖从0到Nyquist的整个频率范围,通常我们会设定频率上限和下限,屏蔽掉某些不需要或者有噪声的频率范围。三角形的数量表示Mel滤波之后特征向量的维度,一般取40个。

关于这一部分的详细情况,每个三角形对应的滤波系数可以查看
Mel系数计算, 滤波计算参考滤波计算

mel倒谱公式:

取Log

这一步就是取上一步结果的对数。简单点理解,它是对纵轴的放缩,可以放大低能量处的能量差异;更深层次地,这是在模仿倒谱(cepstrum)的计算步骤。

mfcc

FBank特征已经很贴近人耳的响应特性,但是仍有一些不足:FBank特征相邻的特征高度相关(相邻滤波器组有重叠),因此当我们用HMM对音素建模的时候,几乎总需要首先进行倒谱转换,通过这样得到MFCC特征。

MFCC特征的提取是在FBank特征的基础上再进行离散余弦变换, 因此前面几步和FBank一样.

离散余弦变换(DCT)

假设做完取Log之后,我们得到N维的特征向量Mlog。离散余弦变换公式如下:

N是取Log之后的特征维度,M 是 DCT(离散余弦变换)之后的特征维度。
DCT的实质是去除各维信号之间的相关性,将信号映射到低维空间。

离散余弦变换(discrete cosine transform,DCT)是傅里叶变换的一个变种,好处是结果是实数,没有虚部。DCT还有一个特点是,对于一般的语音信号,这一步的结果的前几个系数特别大,后面的系数比较小,可以忽略。上面说了一般取40个三角形,所以DCT的结果也是40个点;实际中,一般仅保留前12~20个,这就进一步压缩了数据。

均值方差归一化(CMVN)

实际情况下,受不同麦克风及音频通道的影响,会导致相同音素的特征差别比较大,通过CMVN可以得到均值为0,方差为1的标准特征。均值方差可以以一段语音为单位计算,但更好的是在一个较大的数据及上进行计算,这样识别效果会更加稳健。Kaldi中计算均值和方差的代码compute-cmvn-stats.cc, 归一化apply-cmvn.cc

FBank与MFCC对比

计算量:MFCC是在FBank的基础上进行的,所以MFCC的计算量更大

特征区分度:FBank特征相关性较高,MFCC具有更好的判别度,这也是在大多数语音识别论文中用的是MFCC,而不是FBank的原因

MFCC Features

The default parameters should work fairly well for most cases, if you want to change the MFCC parameters, the following parameters are supported:

python
def mfcc(signal,samplerate=16000,winlen=0.025,winstep=0.01,numcep=13,
                 nfilt=26,nfft=512,lowfreq=0,highfreq=None,preemph=0.97,
     ceplifter=22,appendEnergy=True)
ParameterDescription
signalthe audio signal from which to compute features. Should be an N*1 array
sampleratethe samplerate of the signal we are working with.
winlenthe length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
winstepthe step between successive windows in seconds. Default is 0.01s (10 milliseconds)
numcepthe number of cepstrum to return, default 13
nfiltthe number of filters in the filterbank, default 26.
nfftthe FFT size. Default is 512
lowfreqlowest band edge of mel filters. In Hz, default is 0
highfreqhighest band edge of mel filters. In Hz, default is samplerate/2
preemphapply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97
ceplifterapply a lifter to final cepstral coefficients. 0 is no lifter. Default is 22
appendEnergyif this is true, the zeroth cepstral coefficient is replaced with the log of the total frame energy.
returnsA numpy array of size (NUMFRAMES by numcep) containing features. Each row holds 1 feature vector.

Filterbank Features

These filters are raw filterbank energies. For most applications you will want the logarithm of these features. The default parameters should work fairly well for most cases. If you want to change the fbank parameters, the following parameters are supported:

python
def fbank(signal,samplerate=16000,winlen=0.025,winstep=0.01,
      nfilt=26,nfft=512,lowfreq=0,highfreq=None,preemph=0.97)
ParameterDescription
signalthe audio signal from which to compute features. Should be an N*1 array
sampleratethe samplerate of the signal we are working with
winlenthe length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
winstepthe step between seccessive windows in seconds. Default is 0.01s (10 milliseconds)
nfiltthe number of filters in the filterbank, default 26.
nfftthe FFT size. Default is 512.
lowfreqlowest band edge of mel filters. In Hz, default is 0
highfreqhighest band edge of mel filters. In Hz, default is samplerate/2
preemphapply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97
returnsA numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector. The second return value is the energy in each frame (total energy, unwindowed)

 

使用对角协方差矩阵的GMM由于忽略了不同特征维度的相关性,MFCC更适合用来做特征。

DNN/CNN可以更好的利用这些相关性,把MFCC的离散余弦变换(DCT)
省略,使用fbank特征可以更多地降低WER。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值