语音识别的第一步是特征提取,也就是提取语音信号中有助于理解语言内容的部分而丢弃掉其它的东西(比如背景噪音和情绪等等)。
语音的产生过程如下:语音信号是通过肺部呼出气体,然后通过声门的开启与闭合产生的周期信号。再通过声道(包括舌头牙齿)对信号调制后产生。区分语音的关键就是声道的不同形状。不同的形状就对应不同的滤波器,从而产生了不同的语音。如果我们可以准确的知道声道的形状,那么我们就可以得到不同的音素(phoneme)的表示。声道的形状体现在语音信号短时功率谱的包络(envelope)中,因此好多特征提取方法需要准确的表示包络信息。
在任意一个Automatic speech recognition 系统中,第一步就是提取特征。换句话说,我们需要把音频信号中具有辨识性的成分提取出来,然后把其他的乱七八糟的信息扔掉,例如背景噪声啊,情绪啊等等。

搞清语音是怎么产生的对于我们理解语音有很大帮助。人通过声道产生声音,声道的shape(形状?)决定了发出怎样的声音。声道的shape包括舌头,牙齿等。如果我们可以准确的知道这个形状,那么我们就可以对产生的音素phoneme进行准确的描述。声道的形状在语音短时功率谱的包络中显示
语音识别中,特征提取至关重要,MFCC(梅尔频率倒谱系数)作为常用特征,结合了人耳感知特性和语音产生机制。本文详细介绍了MFCC的提取过程,包括预加重、分帧、加窗、FFT、梅尔滤波器组、离散余弦变换等步骤,以及在现代语音识别系统中的应用和优缺点。
订阅专栏 解锁全文
432

被折叠的 条评论
为什么被折叠?



