线性代数笔记34——左右逆和伪逆

  原文 | https://mp.weixin.qq.com/s/PRQQvSfmipxPBeF80aEQ1A

  一个矩阵有逆矩阵的前提是该矩阵是一个满秩的方阵。然而很多时候遇到的都是长方矩阵,长方矩阵是否有类似的逆矩阵呢?

  先把4个基本子空间的图贴上,A是m×n的矩阵,其中r是矩阵的秩:

两侧逆(2-sided inverse)

  我们通常说的逆矩阵都是针对满秩方阵而言,此时AA-1 = I = A-1AA左乘或右乘A-1的结果都是单位矩阵,所以将这种逆矩阵称为两侧逆。

左逆(Left inverse)

  如果A是一个m×n的列满秩矩阵,意味着A的各列线性无关,A的秩和列数相等,r = n,但A可能存在更多的行,m ≥ n,此时A的零空间只有零向量,并且Ax = b有唯一解(m = n时)或无解(m > n时)。

  对于列满秩矩阵来说,对称矩阵ATA是一个n×n的满秩方阵,因此ATA可逆,此时:

  

  我们称A-1left为A的左逆,是一个n×m的矩阵,左逆也是讨论最小二乘问题的核心。

右逆(Right inverse)

  如果A是一个m×n的行满秩矩阵,意味着A的各行线性无关,A的秩和行数相等,r = m,但A可能存在更多的列,m ≤ n。A的左零空间只有零向量,A的零空间是n - r维,因此有n – r个自由变量,当n > m时,Ax = b有无数解。

  对于行满秩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是8位的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值