原文 | https://mp.weixin.qq.com/s/PRQQvSfmipxPBeF80aEQ1A
一个矩阵有逆矩阵的前提是该矩阵是一个满秩的方阵。然而很多时候遇到的都是长方矩阵,长方矩阵是否有类似的逆矩阵呢?
先把4个基本子空间的图贴上,A是m×n的矩阵,其中r是矩阵的秩:
两侧逆(2-sided inverse)
我们通常说的逆矩阵都是针对满秩方阵而言,此时AA-1 = I = A-1A,A左乘或右乘A-1的结果都是单位矩阵,所以将这种逆矩阵称为两侧逆。
左逆(Left inverse)
如果A是一个m×n的列满秩矩阵,意味着A的各列线性无关,A的秩和列数相等,r = n,但A可能存在更多的行,m ≥ n,此时A的零空间只有零向量,并且Ax = b有唯一解(m = n时)或无解(m > n时)。
对于列满秩矩阵来说,对称矩阵ATA是一个n×n的满秩方阵,因此ATA可逆,此时:
我们称A-1left为A的左逆,是一个n×m的矩阵,左逆也是讨论最小二乘问题的核心。
右逆(Right inverse)
如果A是一个m×n的行满秩矩阵,意味着A的各行线性无关,A的秩和行数相等,r = m,但A可能存在更多的列,m ≤ n。A的左零空间只有零向量,A的零空间是n - r维,因此有n – r个自由变量,当n > m时,Ax = b有无数解。
对于行满秩