指数分布(Exponential distribution)是一种连续型概率分布,可以用来表示独立随机事件发生的时间间隔的概率,比如婴儿出生的时间间隔、旅客进入机场的时间间隔、打进客服中心电话的时间间隔、系统出现bug的时间间隔等等。
指数分布的由来
指数分布与泊松分布存在着联系,它实际上可以由泊松分布推导而来。
泊松分布(概率统计15)中已经介绍过泊松分布,除了作为二项分布的近似外,当独立事件发生的频率固定时,泊松分布还可以刻画算单位时间内事件发生次数的概率分布。
假设某个公司有一个带伤上线的系统,每周平均的故障次数是2次,在下周不发生故障概率是多少?
每周平均的故障次数是2次,我们可以把“一周”看作单位时间,程序的故障率是λ=2,单位时间内发生故障的次数X符合泊松分布X~Po(λ)。在下周不发生故障的概率相当于发生了0个故障的概率:
现在要求计算两周之内不发生故障的概率。我们用随机变量T>2表示在2个单位时间内系统未发生故障的事件。在已知下周不发生故障的概率的情况下,P(T>2)计算起来很容易:
我们换一种思路。之前是把“一周”看作单位时间,单位时间内事件发生的频率是λ=2。现在是变成了双倍的单位时间,故障发生的频率自然就变成2λ=4,这样一来,两周之内不发生故障的概率是:
结果和①相等。
时间是连续的,如果计算T=1.5周内不发生故障的概率,①就显得无能为力了。但是②却没有任何问题,只要把单位时间内事件的频率λ随着时间T进行放缩就可以了:
将问题推广到任意时间间隔: