在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。
当我们掷一枚硬币时,说正面朝上的概率是1/2,是这样吗?当你掷十次硬币时,正面朝上的概率可未必是1/2,这个结果带有很强的随机性,并没有什么规律可言。但是当投掷的次数足够多时,规律就呈现出来了。概率研究的是随机现象背后的客观规律,当试验次数趋近于无穷时,正面朝上的频率收敛于1/2概率。
大数定律是概率论中讨论随机变量序列的算术平均值向随机变量各数学期望的算术平均值收敛的定律。我觉得还是不要计较概念,关注实际例子就好。
以斗地主为例,玩家的水平有高有低,但每个人都有一个真实水平,衡量真实水平的数字特征就是获胜的数学期望。然而高手也不见得每次都会获胜,因为除了实力外,运气也占有很大比重,顶尖高手面对一手烂牌也会束手无策。我们并不能以一局的输赢判断某个人打牌的水平高低,此时运气带来的影响会放大,也就是随机性太大,但是随着打牌的次数增多,高手的成绩会渐渐趋于稳定,他赢的次数会渐渐符合他的真实水平,此时随机性背后的客观规律会逐渐显现出来。
我们用一段程序模拟大数定律。这段程序在1~10中随便抽取n个数,然后计算平均值:
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
results = []
for n in range(1, 10000):
nums = np.random.randint(low=1, high=10, size=n)
results.append(nums.mean())